Aung Aereas, Seo Young N, Lu Shaoying, Wang Yingxiao, Jamora Colin, del Álamo Juan C, Varghese Shyni
Department of Bioengineering, University of California-San Diego, La Jolla, California.
Department of Bioengineering, University of California-San Diego, La Jolla, California; IFOM-inStem Joint Research Laboratory, Bangalore, India.
Biophys J. 2014 Dec 2;107(11):2528-37. doi: 10.1016/j.bpj.2014.07.078.
Cell invasion and migration that occurs, for example, in cancer metastasis is rooted in the ability of cells to navigate through varying levels of physical constraint exerted by the extracellular matrix. Cancer cells can invade matrices in either a protease-independent or a protease-dependent manner. An emerging critical component that influences the mode of cell invasion is the traction stresses generated by the cells in response to the physicostructural properties of the extracellular matrix. In this study, we have developed a reference-free quantitative assay for measuring three-dimensional (3D) traction stresses generated by cells during the initial stages of invasion into matrices exerting varying levels of mechanical resistance. Our results show that as cells encounter higher mechanical resistance, a larger fraction of them shift to protease-mediated invasion, and this process begins at lower values of cell invasion depth. On the other hand, the compressive stress generated by the cells at the onset of protease-mediated invasion is found to be independent of matrix stiffness, suggesting that 3D traction stress is a key factor in triggering protease-mediated cancer cell invasion. At low 3D compressive traction stresses, cells utilize bleb formation to indent the matrix in a protease independent manner. However, at higher stress values, cells utilize invadopodia-like structures to mediate protease-dependent invasion into the 3D matrix. The critical value of compressive traction stress at the transition from a protease-independent to a protease-dependent mode of invasion is found to be ∼165 Pa.
例如,发生在癌症转移过程中的细胞侵袭和迁移,其根源在于细胞在细胞外基质施加的不同程度物理限制中导航的能力。癌细胞可以通过蛋白酶非依赖或蛋白酶依赖的方式侵袭基质。一个影响细胞侵袭模式的新的关键因素是细胞响应细胞外基质的物理结构特性而产生的牵引应力。在本研究中,我们开发了一种无参考定量分析方法,用于测量细胞在侵袭具有不同机械阻力水平的基质初始阶段产生的三维(3D)牵引应力。我们的结果表明,随着细胞遇到更高的机械阻力,其中更大比例的细胞会转向蛋白酶介导的侵袭,并且这个过程在较低的细胞侵袭深度值时就开始了。另一方面,发现在蛋白酶介导的侵袭开始时细胞产生的压缩应力与基质硬度无关,这表明三维牵引应力是触发蛋白酶介导的癌细胞侵袭的关键因素。在低三维压缩牵引应力下,细胞利用泡状伪足形成以蛋白酶非依赖的方式使基质凹陷。然而,在较高应力值下,细胞利用类侵袭性伪足结构介导蛋白酶依赖的侵袭进入三维基质。从蛋白酶非依赖侵袭模式转变为蛋白酶依赖侵袭模式时压缩牵引应力的临界值约为165帕。