Stallings Jonathan D, Ippolito Danielle L, Rakesh Vineet, Baer Christine E, Dennis William E, Helwig Bryan G, Jackson David A, Leon Lisa R, Lewis John A, Reifman Jaques
Environmental Health Program, U,S, Army Center for Environmental Health Research, Bldg, 568 Doughten Drive, MD 21702-5010 Fort Detrick, Maryland.
BMC Genomics. 2014 Dec 3;15(1):1058. doi: 10.1186/1471-2164-15-1058.
The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model.
We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response.
Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery.
与热疗相关的体内基因反应了解甚少。在此,我们使用清醒的体内大鼠模型对热应激的基因反应进行全面的多器官表征。
我们加热大鼠,直到植入的热探针显示核心体温达到41.8°C(最高体温,Tc,Max)。然后,我们将热应激后处于最高体温、24小时和48小时的实验动物组所采集的肝、肺、肾和心脏组织的转录组图谱与处于环境温度下的时间匹配对照组进行比较。48小时时的心脏组织病理学检查支持6只动物中有3只存在持续性心脏损伤。微阵列分析确定了在最高体温时所有四个器官共有的78个差异表达基因。自组织图谱确定了与热应激大鼠蛋白质折叠紊乱相对应的基因特异性特征,这些大鼠在48小时时有心脏损伤的组织病理学证据。通过iTRAQ(相对和绝对定量的等压标签)进行的定量蛋白质组学分析表明,差异蛋白质表达在48小时时与热损伤动物的转录组图谱最为匹配。蛋白质过饱和分数的计算支持了在24小时时丰度发生变化的蛋白质以及在48小时时有心脏损伤的动物中蛋白质聚集倾向增加,这表明蛋白质错误折叠与热应激反应之间存在机制关联。
转录和蛋白质水平的通路分析均支持有持续性热损伤组织病理学证据的热应激大鼠在能量学和细胞代谢方面存在灾难性缺陷以及未折叠蛋白反应的激活,为热疾病和恢复的系统水平生理模型提供了基础。