Suppr超能文献

热应激大鼠中与恢复和损伤相关的基因表达模式

Patterns of gene expression associated with recovery and injury in heat-stressed rats.

作者信息

Stallings Jonathan D, Ippolito Danielle L, Rakesh Vineet, Baer Christine E, Dennis William E, Helwig Bryan G, Jackson David A, Leon Lisa R, Lewis John A, Reifman Jaques

机构信息

Environmental Health Program, U,S, Army Center for Environmental Health Research, Bldg, 568 Doughten Drive, MD 21702-5010 Fort Detrick, Maryland.

出版信息

BMC Genomics. 2014 Dec 3;15(1):1058. doi: 10.1186/1471-2164-15-1058.

Abstract

BACKGROUND

The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model.

RESULTS

We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response.

CONCLUSIONS

Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery.

摘要

背景

与热疗相关的体内基因反应了解甚少。在此,我们使用清醒的体内大鼠模型对热应激的基因反应进行全面的多器官表征。

结果

我们加热大鼠,直到植入的热探针显示核心体温达到41.8°C(最高体温,Tc,Max)。然后,我们将热应激后处于最高体温、24小时和48小时的实验动物组所采集的肝、肺、肾和心脏组织的转录组图谱与处于环境温度下的时间匹配对照组进行比较。48小时时的心脏组织病理学检查支持6只动物中有3只存在持续性心脏损伤。微阵列分析确定了在最高体温时所有四个器官共有的78个差异表达基因。自组织图谱确定了与热应激大鼠蛋白质折叠紊乱相对应的基因特异性特征,这些大鼠在48小时时有心脏损伤的组织病理学证据。通过iTRAQ(相对和绝对定量的等压标签)进行的定量蛋白质组学分析表明,差异蛋白质表达在48小时时与热损伤动物的转录组图谱最为匹配。蛋白质过饱和分数的计算支持了在24小时时丰度发生变化的蛋白质以及在48小时时有心脏损伤的动物中蛋白质聚集倾向增加,这表明蛋白质错误折叠与热应激反应之间存在机制关联。

结论

转录和蛋白质水平的通路分析均支持有持续性热损伤组织病理学证据的热应激大鼠在能量学和细胞代谢方面存在灾难性缺陷以及未折叠蛋白反应的激活,为热疾病和恢复的系统水平生理模型提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7ae/4302131/b2a7a4d7cc62/12864_2014_6768_Fig1_HTML.jpg

相似文献

1
Patterns of gene expression associated with recovery and injury in heat-stressed rats.
BMC Genomics. 2014 Dec 3;15(1):1058. doi: 10.1186/1471-2164-15-1058.
3
Evaluation of Hsp47 expression in heat-stressed rat myocardial cells in vitro and in vivo.
Genet Mol Res. 2014 Dec 18;13(4):10787-802. doi: 10.4238/2014.December.18.20.
4
Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.
Theriogenology. 2013 Jan 15;79(2):374-82.e1-7. doi: 10.1016/j.theriogenology.2012.10.010. Epub 2012 Nov 13.
6
Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis.
PLoS One. 2017 Jul 31;12(7):e0181900. doi: 10.1371/journal.pone.0181900. eCollection 2017.
7
Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress.
Theriogenology. 2016 Feb;85(3):483-494.e8. doi: 10.1016/j.theriogenology.2015.09.028. Epub 2015 Sep 21.
10
Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens.
PLoS One. 2015 May 1;10(5):e0125816. doi: 10.1371/journal.pone.0125816. eCollection 2015.

引用本文的文献

2
Proteomic changes of the bovine blood plasma in response to heat stress in a tropically adapted cattle breed.
Front Genet. 2024 Aug 1;15:1392670. doi: 10.3389/fgene.2024.1392670. eCollection 2024.
3
Insights into pathophysiology and therapeutic strategies for heat stroke: Lessons from a baboon model.
Exp Physiol. 2024 Apr;109(4):484-501. doi: 10.1113/EP091586. Epub 2023 Dec 20.
5
Whole genome transcriptomic reveals heat stroke molecular signatures in humans.
J Physiol. 2023 Jun;601(12):2407-2423. doi: 10.1113/JP284031. Epub 2023 Apr 5.
9
Classic and exertional heatstroke.
Nat Rev Dis Primers. 2022 Feb 3;8(1):8. doi: 10.1038/s41572-021-00334-6.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins.
Cell Rep. 2013 Nov 14;5(3):781-90. doi: 10.1016/j.celrep.2013.09.043. Epub 2013 Oct 31.
3
An unexpected intriguing effect of Toll-like receptor regulator RP105 (CD180) on atherosclerosis formation with alterations on B-cell activation.
Arterioscler Thromb Vasc Biol. 2013 Dec;33(12):2810-7. doi: 10.1161/ATVBAHA.113.301882. Epub 2013 Oct 10.
4
Integrated glycoproteomics demonstrates fucosylated serum paraoxonase 1 alterations in small cell lung cancer.
Mol Cell Proteomics. 2014 Jan;13(1):30-48. doi: 10.1074/mcp.M113.028621. Epub 2013 Oct 1.
5
A 3-D mathematical model to identify organ-specific risks in rats during thermal stress.
J Appl Physiol (1985). 2013 Dec;115(12):1822-37. doi: 10.1152/japplphysiol.00589.2013. Epub 2013 Sep 26.
6
An exploration of heat tolerance in mice utilizing mRNA and microRNA expression analysis.
PLoS One. 2013 Aug 15;8(8):e72258. doi: 10.1371/journal.pone.0072258. eCollection 2013.
8
Determining protein concentrations of the human ventricular proteome.
Methods Mol Biol. 2013;1005:11-24. doi: 10.1007/978-1-62703-386-2_2.
9
Differential regulation of M3/6 (DUSP8) signaling complexes in response to arsenite-induced oxidative stress.
Cell Signal. 2013 Feb;25(2):429-38. doi: 10.1016/j.cellsig.2012.11.010. Epub 2012 Nov 15.
10
The role of hyperosmotic stress in inflammation and disease.
Biomol Concepts. 2012 Aug;3(4):345-364. doi: 10.1515/bmc-2012-0001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验