Suppr超能文献

雌激素受体亚型介导雌性大鼠肠系膜微血管中不同的微血管扩张和细胞内钙离子浓度降低。

Estrogen receptor subtypes mediate distinct microvascular dilation and reduction in [Ca2+]I in mesenteric microvessels of female rat.

作者信息

Mazzuca Marc Q, Mata Karina M, Li Wei, Rangan Sridhar S, Khalil Raouf A

机构信息

Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts

出版信息

J Pharmacol Exp Ther. 2015 Feb;352(2):291-304. doi: 10.1124/jpet.114.219865. Epub 2014 Dec 3.

Abstract

Estrogen interacts with estrogen receptors (ERs) to induce vasodilation, but the ER subtype and post-ER relaxation pathways are unclear. We tested if ER subtypes mediate distinct vasodilator and intracellular free Ca(2+) concentration ([Ca(2+)]i) responses via specific relaxation pathways in the endothelium and vascular smooth muscle (VSM). Pressurized mesenteric microvessels from female Sprague-Dawley rats were loaded with fura-2, and the changes in diameter and [Ca(2+)]i in response to 17β-estradiol (E2) (all ERs), PPT (4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]-tris-phenol) (ERα), diarylpropionitrile (DPN) (ERβ), and G1 [(±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro:3H-cyclopenta(c)quinolin-8-yl]-ethanon] (GPR30) were measured. In microvessels preconstricted with phenylephrine, ER agonists caused relaxation and decrease in [Ca(2+)]i that were with E2 = PPT > DPN > G1, suggesting that E2-induced vasodilation involves ERα > ERβ > GPR30. Acetylcholine caused vasodilation and decreased [Ca(2+)]i, which were abolished by endothelium removal or treatment with the nitric oxide synthase blocker Nω-nitro-l-arginine methyl ester (L-NAME) and the K(+) channel blockers tetraethylammonium (nonspecific) or apamin (small conductance Ca(2+)-activated K(+) channel) plus TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole) (intermediate conductance Ca(2+)-activated K(+) channel), suggesting endothelium-derived hyperpolarizing factor-dependent activation of KCa channels. E2-, PPT-, DPN-, and G1-induced vasodilation and decreased [Ca(2+)]i were not blocked by L-NAME, TEA, apamin plus TRAM-34, iberiotoxin (large conductance Ca(2+)- and voltage-activated K(+) channel), 4-aminopyridine (voltage-dependent K(+) channel), glibenclamide (ATP-sensitive K(+) channel), or endothelium removal, suggesting an endothelium- and K(+) channel-independent mechanism. In endothelium-denuded vessels preconstricted with phenylephrine, high KCl, or the Ca(2+) channel activator Bay K 8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester), ER agonist-induced relaxation and decreased [Ca(2+)]i were with E2 = PPT > DPN > G1 and not inhibited by the guanylate cyclase inhibitor ODQ [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], and showed a similar relationship between decreased [Ca(2+)]i and vasorelaxation, supporting direct effects on Ca(2+) entry in VSM. Immunohistochemistry revealed ERα, ERβ, and GPR30 mainly in the vessel media and VSM. Thus, in mesenteric microvessels, ER subtypes mediate distinct vasodilation and decreased [Ca(2+)]i (ERα > ERβ > GPR30) through endothelium- and K(+) channel-independent inhibition of Ca(2+) entry mechanisms of VSM contraction.

摘要

雌激素与雌激素受体(ERs)相互作用以诱导血管舒张,但其ER亚型和ER后舒张途径尚不清楚。我们测试了ER亚型是否通过内皮和血管平滑肌(VSM)中的特定舒张途径介导不同的血管舒张和细胞内游离Ca(2+)浓度([Ca(2+)]i)反应。将来自雌性Sprague-Dawley大鼠的加压肠系膜微血管用fura-2加载,并测量了对17β-雌二醇(E2)(所有ERs)、PPT(4,4',4''-[4-丙基-(1H)-吡唑-1,3,5-三基]-三苯酚)(ERα)、二芳基丙腈(DPN)(ERβ)和G1 [(±)-1-[(3aR*,4S*,9bS*)-4-(6-溴-1,3-苯并二氧杂环戊烯-5-基)-3a,4,5,9b-四氢:3H-环戊并(c)喹啉-8-基]-乙酮](GPR30)的直径和[Ca(2+)]i变化。在用去氧肾上腺素预收缩的微血管中,ER激动剂引起舒张并使[Ca(2+)]i降低,其顺序为E2 = PPT > DPN > G1,表明E2诱导的血管舒张涉及ERα > ERβ > GPR30。乙酰胆碱引起血管舒张并降低[Ca(2+)]i,去除内皮或用一氧化氮合酶阻滞剂Nω-硝基-L-精氨酸甲酯(L-NAME)以及K(+)通道阻滞剂四乙铵(非特异性)或蜂毒明肽(小电导Ca(2+)-激活的K(+)通道)加TRAM-34(1-[(2-氯苯基)二苯基甲基]-1H-吡唑)(中电导Ca(2+)-激活的K(+)通道)处理可消除这种作用,提示内皮衍生的超极化因子依赖性激活KCa通道。E2、PPT、DPN和G1诱导的血管舒张和[Ca(2+)]i降低不受L-NAME、TEA、蜂毒明肽加TRAM-34、iberiotoxin(大电导Ca(2+)-和电压激活的K(+)通道)、4-氨基吡啶(电压依赖性K(+)通道)、格列本脲(ATP敏感性K(+)通道)或去除内皮的影响,提示一种不依赖内皮和K(+)通道的机制。在用去氧肾上腺素、高KCl或Ca(2+)通道激活剂Bay K 8644(1,4-二氢-2,6-二甲基-5-硝基-4-[2-(三氟甲基)phenyl]-3-吡啶羧酸甲酯)预收缩的去内皮血管中,ER激动剂诱导的舒张和[Ca(2+)]i降低顺序为E2 = PPT > DPN > G1,且不受鸟苷酸环化酶抑制剂ODQ [1H-(1,2,4)恶二唑并(4,3-a)喹喔啉-1-酮]抑制,并显示出[Ca(2+)]i降低与血管舒张之间的相似关系,支持对VSM中Ca(2+)内流的直接作用。免疫组织化学显示ERα、ERβ和GPR30主要存在于血管中膜和VSM中。因此,在肠系膜微血管中,ER亚型通过不依赖内皮和K(+)通道的方式抑制VSM收缩的Ca(2+)内流机制,介导不同的血管舒张和[Ca(2+)]i降低(ERα > ERβ > GPR30)。

相似文献

1
Estrogen receptor subtypes mediate distinct microvascular dilation and reduction in [Ca2+]I in mesenteric microvessels of female rat.
J Pharmacol Exp Ther. 2015 Feb;352(2):291-304. doi: 10.1124/jpet.114.219865. Epub 2014 Dec 3.
2
Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy.
Am J Physiol Heart Circ Physiol. 2015 Nov 15;309(10):H1679-96. doi: 10.1152/ajpheart.00532.2015. Epub 2015 Sep 25.
5
The Curcumin-Induced Vasorelaxation in Rat Superior Mesenteric Arteries.
Ann Vasc Surg. 2018 Apr;48:233-240. doi: 10.1016/j.avsg.2017.09.007. Epub 2017 Sep 22.
8
Endothelium-dependent nitric oxide and hyperpolarization-mediated venous relaxation pathways in rat inferior vena cava.
J Vasc Surg. 2012 Jun;55(6):1716-25. doi: 10.1016/j.jvs.2011.10.124. Epub 2011 Dec 30.
10
A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
Br J Pharmacol. 1997 Dec;122(8):1573-84. doi: 10.1038/sj.bjp.0701546.

引用本文的文献

1
Hormone Replacement Therapy and Cardiovascular Health in Postmenopausal Women.
Int J Mol Sci. 2025 May 24;26(11):5078. doi: 10.3390/ijms26115078.
2
The association between depressive symptoms and ischemic heart disease in postmenopausal women: a cross-sectional study.
Front Psychol. 2025 Mar 5;16:1485291. doi: 10.3389/fpsyg.2025.1485291. eCollection 2025.
3
Marked oestrous cycle-dependent regulation of rat arterial K 7.4 channels driven by GPER1.
Br J Pharmacol. 2023 Jan;180(2):174-193. doi: 10.1111/bph.15947. Epub 2022 Oct 11.
4
The Association of Triglyceride Glucose index for Coronary Artery Disease in Postmenopausal Women.
Clin Appl Thromb Hemost. 2022 Jan-Dec;28:10760296221094030. doi: 10.1177/10760296221094030.
5
Association of reproductive factors with dementia: A systematic review and dose-response meta-analyses of observational studies.
EClinicalMedicine. 2021 Dec 14;43:101236. doi: 10.1016/j.eclinm.2021.101236. eCollection 2022 Jan.
6
Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling.
Curr Res Physiol. 2021 Mar 28;4:103-118. doi: 10.1016/j.crphys.2021.03.003. eCollection 2021.
7
Carbonic anhydrase inhibition improves pulmonary artery reactivity and nitric oxide-mediated relaxation in sugen-hypoxia model of pulmonary hypertension.
Am J Physiol Regul Integr Comp Physiol. 2021 Jun 1;320(6):R835-R850. doi: 10.1152/ajpregu.00362.2020. Epub 2021 Apr 7.
8
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy.
Int J Mol Sci. 2020 Jun 18;21(12):4349. doi: 10.3390/ijms21124349.
9
G Protein-Coupled Receptor 30 Mediates the Anticancer Effects Induced by Eicosapentaenoic Acid in Ovarian Cancer Cells.
Cancer Res Treat. 2020 Jul;52(3):815-829. doi: 10.4143/crt.2019.380. Epub 2020 Mar 5.
10
Oroxylin A Reduces Vasoconstriction in Rat Aortic Rings through Promoting NO Production and NOS Protein Expression via Estrogen Receptor Signal Pathway.
Evid Based Complement Alternat Med. 2020 Jan 30;2020:9257950. doi: 10.1155/2020/9257950. eCollection 2020.

本文引用的文献

2
G protein-coupled estrogen receptor 1 mediates relaxation of coronary arteries via cAMP/PKA-dependent activation of MLCP.
Am J Physiol Endocrinol Metab. 2014 Aug 15;307(4):E398-407. doi: 10.1152/ajpendo.00534.2013. Epub 2014 Jul 8.
3
Downregulation of microvascular endothelial type B endothelin receptor is a central vascular mechanism in hypertensive pregnancy.
Hypertension. 2014 Sep;64(3):632-43. doi: 10.1161/HYPERTENSIONAHA.114.03315. Epub 2014 Jun 9.
4
Mechanisms of estrogen effects on the endothelium: an overview.
Can J Cardiol. 2014 Jul;30(7):705-12. doi: 10.1016/j.cjca.2013.08.006. Epub 2013 Nov 16.
5
Vasodilation by GPER in mesenteric arteries involves both endothelial nitric oxide and smooth muscle cAMP signaling.
Steroids. 2014 Mar;81:99-102. doi: 10.1016/j.steroids.2013.10.017. Epub 2013 Nov 16.
6
Estrogens and cardiovascular disease risk revisited: the Women's Health Initiative.
Curr Opin Lipidol. 2013 Dec;24(6):493-9. doi: 10.1097/MOL.0000000000000022.
7
The Women's Health Initiative trial and related studies: 10 years later: a clinician's view.
J Steroid Biochem Mol Biol. 2014 Jul;142:4-11. doi: 10.1016/j.jsbmb.2013.10.009. Epub 2013 Oct 27.
8
Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.
Biochem Pharmacol. 2013 Dec 15;86(12):1627-42. doi: 10.1016/j.bcp.2013.09.024. Epub 2013 Oct 4.
9
Reduced vasorelaxation to estradiol and G-1 in aged female and adult male rats is associated with GPR30 downregulation.
Am J Physiol Endocrinol Metab. 2013 Jul 1;305(1):E113-8. doi: 10.1152/ajpendo.00649.2012. Epub 2013 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验