Christopherson Melissa R, Dawson John A, Stevenson David M, Cunningham Andrew C, Bramhacharya Shanti, Weimer Paul J, Kendziorski Christina, Suen Garret
Department of Bacteriology, University of Wisconsin-Madison, 5159 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706-1521, USA.
BMC Genomics. 2014 Dec 4;15(1):1066. doi: 10.1186/1471-2164-15-1066.
Bacteria in the genus Ruminococcus are ubiquitous members of the mammalian gastrointestinal tract. In particular, they are important in ruminants where they digest a wide range of plant cell wall polysaccharides. For example, Ruminococcus albus 7 is a primary cellulose degrader that produces acetate usable by its bovine host. Moreover, it is one of the few organisms that ferments cellulose to form ethanol at mesophilic temperatures in vitro. The mechanism of cellulose degradation by R. albus 7 is not well-defined and is thought to involve pilin-like proteins, unique carbohydrate-binding domains, a glycocalyx, and cellulosomes. Here, we used a combination of comparative genomics, fermentation analyses, and transcriptomics to further clarify the cellulolytic and fermentative potential of R. albus 7.
A comparison of the R. albus 7 genome sequence against the genome sequences of related bacteria that either encode or do not encode cellulosomes revealed that R. albus 7 does not encode for most canonical cellulosomal components. Fermentation analysis of R. albus 7 revealed the ability to produce ethanol and acetate on a wide range of fibrous substrates in vitro. Global transcriptomic analysis of R. albus 7 grown at identical dilution rates on cellulose and cellobiose in a chemostat showed that this bacterium, when growing on cellulose, utilizes a carbohydrate-degrading strategy that involves increased transcription of the rare carbohydrate-binding module (CBM) family 37 domain and the tryptophan biosynthetic operon.
Our data suggest that R. albus 7 does not use canonical cellulosomal components to degrade cellulose, but rather up-regulates the expression of CBM37-containing enzymes and tryptophan biosynthesis. This study contributes to a revised model of carbohydrate degradation by this key member of the rumen ecosystem.
瘤胃球菌属细菌是哺乳动物胃肠道中普遍存在的成员。特别是在反刍动物中,它们对于消化多种植物细胞壁多糖非常重要。例如,白色瘤胃球菌7是主要的纤维素降解菌,能产生可供其牛宿主利用的乙酸盐。此外,它是少数能在体外嗜温温度下将纤维素发酵形成乙醇的微生物之一。白色瘤胃球菌7降解纤维素的机制尚不明确,据认为涉及菌毛样蛋白、独特的碳水化合物结合结构域、糖萼和纤维小体。在此,我们结合比较基因组学、发酵分析和转录组学,进一步阐明白色瘤胃球菌7的纤维素分解和发酵潜力。
将白色瘤胃球菌7的基因组序列与编码或不编码纤维小体的相关细菌的基因组序列进行比较,发现白色瘤胃球菌7不编码大多数典型的纤维小体成分。白色瘤胃球菌7的发酵分析表明,它在体外能在多种纤维底物上产生乙醇和乙酸盐。在恒化器中以相同稀释率在纤维素和纤维二糖上生长的白色瘤胃球菌7的全局转录组分析表明,该细菌在纤维素上生长时,采用了一种碳水化合物降解策略,涉及稀有碳水化合物结合模块(CBM)家族37结构域和色氨酸生物合成操纵子的转录增加。
我们的数据表明,白色瘤胃球菌7不使用典型的纤维小体成分来降解纤维素,而是上调含CBM37的酶和色氨酸生物合成的表达。这项研究有助于完善瘤胃生态系统这一关键成员的碳水化合物降解模型。