Schwarz Dietmar, Thompson Andrew J, Kläring Hans-Peter
Department of Plant Nutrition, Leibniz Institute for Vegetable and Ornamental Crops Großbeeren, Germany.
Reader in Molecular Plant Science, School of Energy, Environment and Agrifood, Cranfield University Cranfield, UK.
Front Plant Sci. 2014 Nov 18;5:625. doi: 10.3389/fpls.2014.00625. eCollection 2014.
Domesticated tomato (Solanum lycopersicum) is the most important horticultural crop worldwide. Low polymorphism at the DNA level conflicts with the wealth of morphological variation. Fruits vary widely in size, shape, and color. In contrast, genetic variation between the 16 wild relatives is tremendous. Several large seed banks provide tomato germplasm for both domesticated and wild accessions of tomato. Recently, the genomes of the inbred cultivar "Heinz 1706" (≈900 Mb), and S. pimpinellifolium (739 Mb) were sequenced. Genomic markers and genome re-sequencing data are available for >150 cultivars and accessions. Transformation of tomato is relatively easy and T-DNA insertion line collections are available. Tomato is widely used as a model crop for fruit development but also for diverse physiological, cellular, biochemical, molecular, and genetic studies. It can be easily grown in greenhouses or growth chambers. Plants grow, flower, and develop fruits well at daily light lengths between 8 and 16 h. The required daily light integral of an experiment depends on growth stage and temperature investigated. Temperature must be 10-35°C, relative humidity 30-90%, and, CO2 concentration 200-1500 μmol mol(-1). Temperature determines the speed of the phenological development while daily light integral and CO2 concentration affect photosynthesis and biomass production. Seed to seed cultivation takes 100 days at 20°C and can be shortened or delayed by temperature. Tomato may be cultivated in soil, substrates, or aeroponically without any substrate. Root volume, and water uptake requirements are primarily determined by transpiration demands of the plants. Many nutrient supply recipes and strategies are available to ensure sufficient supply as well as specific nutrient deficits/surplus. Using appropriate cultivation techniques makes tomato a convenient model plant for researchers, even for beginners.
栽培番茄(Solanum lycopersicum)是全球最重要的园艺作物。DNA 水平上的低多态性与丰富的形态变异相矛盾。果实的大小、形状和颜色差异很大。相比之下,16 个野生近缘种之间的遗传变异非常大。几个大型种子库为栽培番茄和野生番茄种质提供了资源。最近,自交品种“Heinz 1706”(约 900 Mb)和醋栗番茄(S. pimpinellifolium)(739 Mb)的基因组已被测序。基因组标记和基因组重测序数据可用于 150 多个品种和种质。番茄的转化相对容易,并且有 T-DNA 插入系群体。番茄不仅被广泛用作果实发育的模式作物,还用于各种生理、细胞、生化、分子和遗传研究。它可以很容易地在温室或生长室中种植。植株在每日光照时长为 8 至 16 小时的条件下生长、开花和结果良好。实验所需的每日光积分取决于所研究的生长阶段和温度。温度必须在 10 - 35°C 之间,相对湿度为 30 - 90%,二氧化碳浓度为 200 - 1500 μmol mol(-1)。温度决定物候发育的速度,而每日光积分和二氧化碳浓度影响光合作用和生物量生产。在 20°C 下,从种子到种子的栽培需要 100 天,温度可以缩短或延长这个时间。番茄可以种植在土壤、基质中,也可以采用气雾培法而不使用任何基质。根体积和水分吸收需求主要由植物的蒸腾需求决定。有许多养分供应配方和策略可确保充足供应以及特定的养分亏缺/过剩。使用适当的栽培技术使番茄成为研究人员,甚至初学者方便使用的模式植物。