Brieke Clara, Kratzig Veronika, Haslinger Kristina, Winkler Andreas, Cryle Max J
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
Org Biomol Chem. 2015 Feb 21;13(7):2012-21. doi: 10.1039/c4ob02452d.
Understanding the mechanisms underpinning glycopeptide antibiotic biosynthesis is key to the future ability to reinvent these compounds. For effective in vitro characterization of the crucial later steps of the biosynthesis, facile access to a wide range of substrate peptides as their Coenzyme A (CoA) conjugates is essential. Here we report the development of a rapid route to glycopeptide precursor CoA conjugates that affords both high yields and excellent purities. This synthesis route is applicable to the synthesis of peptide CoA-conjugates containing racemization-prone arylglycine residues: such residues are hallmarks of non-ribosomal peptide synthesis and have previously been inaccessible to peptide synthesis using Fmoc-type chemistry. We have applied this route to generate glycopeptide precursor peptides in their carrier protein-bound form as substrates to explore the specificity of the first oxygenase enzyme from vancomycin biosynthesis (OxyBvan). Our results indicate that OxyBvan is a highly promiscuous catalyst for phenolic coupling of diverse glycopeptide precursors that accepts multiple carrier protein substrates, even on carrier protein domains from alternate glycopeptide biosynthetic machineries. These results represent the first important steps in the development of an in vitro biomimetic synthesis of modified glycopeptide aglycones.
了解糖肽抗生素生物合成的机制是未来重新设计这些化合物的关键。为了有效地在体外表征生物合成的关键后期步骤,能够方便地获得各种作为其辅酶A(CoA)缀合物的底物肽至关重要。在此,我们报告了一种快速合成糖肽前体CoA缀合物的方法,该方法具有高产率和高纯度。这种合成路线适用于含有易发生消旋化的芳基甘氨酸残基的肽CoA缀合物的合成:此类残基是非核糖体肽合成的标志,以前使用Fmoc型化学方法无法进行肽合成。我们已应用此路线生成与载体蛋白结合形式的糖肽前体肽作为底物,以探索万古霉素生物合成中第一种加氧酶(OxyBvan)的特异性。我们的结果表明,OxyBvan是一种高度通用的催化剂,可用于多种糖肽前体的酚类偶联反应,它能接受多种载体蛋白底物,甚至是来自其他糖肽生物合成机制的载体蛋白结构域。这些结果代表了体外仿生合成修饰糖肽苷元发展过程中的首个重要步骤。