Suppr超能文献

用于不完整数据因果推断的多重填补G公式。

G-formula with multiple imputation for causal inference with incomplete data.

作者信息

Bartlett Jonathan W, Olarte Parra Camila, Granger Emily, Keogh Ruth H, van Zwet Erik W, Daniel Rhian M

机构信息

Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.

Department of Biomedical Data Sciences, Leiden University, Leiden, the Netherlands.

出版信息

Stat Methods Med Res. 2025 Jun;34(6):1130-1143. doi: 10.1177/09622802251316971. Epub 2025 Mar 31.

Abstract

G-formula is a popular approach for estimating the effects of time-varying treatments or exposures from longitudinal data. G-formula is typically implemented using Monte-Carlo simulation, with non-parametric bootstrapping used for inference. In longitudinal data settings missing data are a common issue, which are often handled using multiple imputation, but it is unclear how G-formula and multiple imputation should be combined. We show how G-formula can be implemented using Bayesian multiple imputation methods for synthetic data, and that by doing so, we can impute missing data and simulate the counterfactuals of interest within a single coherent approach. We describe how this can be achieved using standard multiple imputation software and explore its performance using a simulation study and an application from cystic fibrosis.

摘要

G公式是一种用于从纵向数据估计时变治疗或暴露效应的常用方法。G公式通常通过蒙特卡罗模拟来实现,使用非参数自助法进行推断。在纵向数据设置中,缺失数据是一个常见问题,通常使用多重填补法来处理,但尚不清楚G公式和多重填补法应如何结合。我们展示了如何使用贝叶斯多重填补法对合成数据实施G公式,并且通过这样做,我们可以在单一连贯方法中填补缺失数据并模拟感兴趣的反事实情况。我们描述了如何使用标准多重填补软件实现这一点,并通过模拟研究和囊性纤维化的应用来探索其性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f24b/12209542/faac238666e6/10.1177_09622802251316971-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验