RNA Biology Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany.
RNA. 2015 Feb;21(2):202-12. doi: 10.1261/rna.048199.114. Epub 2014 Dec 12.
Chemical modifications of transfer RNA (tRNA) molecules are evolutionarily well conserved and critical for translation and tRNA structure. Little is known how these nucleoside modifications respond to physiological stress. Using mass spectrometry and complementary methods, we defined tRNA modification levels in six yeast species in response to elevated temperatures. We show that 2-thiolation of uridine at position 34 (s(2)U34) is impaired at temperatures exceeding 30°C in the commonly used Saccharomyces cerevisiae laboratory strains S288C and W303, and in Saccharomyces bayanus. Upon stress relief, thiolation levels recover and we find no evidence that modified tRNA or s(2)U34 nucleosides are actively removed. Our results suggest that loss of 2-thiolation follows accumulation of newly synthesized tRNA that lack s(2)U34 modification due to temperature sensitivity of the URM1 pathway in S. cerevisiae and S. bayanus. Furthermore, our analysis of the tRNA modification pattern in selected yeast species revealed two alternative phenotypes. Most strains moderately increase their tRNA modification levels in response to heat, possibly constituting a common adaptation to high temperatures. However, an overall reduction of nucleoside modifications was observed exclusively in S288C. This surprising finding emphasizes the importance of studies that utilize the power of evolutionary biology, and highlights the need for future systematic studies on tRNA modifications in additional model organisms.
tRNA 分子的化学修饰在进化上是高度保守的,对于翻译和 tRNA 结构至关重要。目前对于这些核苷修饰如何响应生理应激知之甚少。我们使用质谱和互补方法,定义了六种酵母物种在应对高温时的 tRNA 修饰水平。我们表明,在常用的酿酒酵母实验室菌株 S288C 和 W303 以及酿酒酵母巴氏亚种中,位置 34 的尿嘧啶 2-硫代(s(2)U34)在超过 30°C 的温度下受到损害。在应激缓解后,硫代水平恢复,我们没有发现修饰的 tRNA 或 s(2)U34 核苷被主动去除的证据。我们的结果表明,由于 URM1 途径在酿酒酵母和酿酒酵母巴氏亚种中的温度敏感性,新合成的 tRNA 积累导致缺乏 s(2)U34 修饰,从而导致 2-硫代修饰丢失。此外,我们对选定酵母物种的 tRNA 修饰模式的分析揭示了两种替代表型。大多数菌株在应对高温时适度增加其 tRNA 修饰水平,这可能是对高温的常见适应。然而,在 S288C 中仅观察到核苷修饰的总体减少。这一令人惊讶的发现强调了利用进化生物学力量进行研究的重要性,并强调了在其他模式生物中进行 tRNA 修饰的未来系统研究的必要性。