Zhang Xiaohuan, Nijland Jeroen G, Driessen Arnold J M
Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands.
FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae012.
Pretreatment of lignocellulose yields a complex sugar mixture that potentially can be converted into bioethanol and other chemicals by engineered yeast. One approach to overcome competition between sugars for uptake and metabolism is the use of a consortium of specialist strains capable of efficient conversion of single sugars. Here, we show that maltose inhibits cell growth of a xylose-fermenting specialist strain IMX730.1 that is unable to utilize glucose because of the deletion of all hexokinase genes. The growth inhibition cannot be attributed to a competition between maltose and xylose for uptake. The inhibition is enhanced in a strain lacking maltase enzymes (dMalX2) and completely eliminated when all maltose transporters are deleted. High-level accumulation of maltose in the dMalX2 strain is accompanied by a hypotonic-like transcriptional response, while cells are rescued from maltose-induced cell death by the inclusion of an extracellular osmolyte such as sorbitol. These data suggest that maltose-induced cell death is due to high levels of maltose uptake causing hypotonic-like stress conditions and can be prevented through engineering of the maltose transporters. Transporter engineering should be included in the development of stable microbial consortia for the efficient conversion of lignocellulosic feedstocks.
木质纤维素的预处理会产生一种复杂的糖混合物,这种混合物有可能通过工程酵母转化为生物乙醇和其他化学品。克服糖类在摄取和代谢方面竞争的一种方法是使用能够高效转化单糖的专业菌株联合体。在这里,我们表明麦芽糖会抑制木糖发酵专业菌株IMX730.1的细胞生长,该菌株由于所有己糖激酶基因的缺失而无法利用葡萄糖。生长抑制不能归因于麦芽糖和木糖在摄取方面的竞争。在缺乏麦芽糖酶的菌株(dMalX2)中,这种抑制作用增强,而当所有麦芽糖转运蛋白被删除时,抑制作用完全消除。dMalX2菌株中麦芽糖的高水平积累伴随着类似低渗的转录反应,而通过添加细胞外渗透剂如山梨醇,细胞可从麦芽糖诱导的细胞死亡中获救。这些数据表明,麦芽糖诱导的细胞死亡是由于高水平的麦芽糖摄取导致类似低渗的应激条件,并且可以通过对麦芽糖转运蛋白进行工程改造来预防。在开发用于高效转化木质纤维素原料的稳定微生物联合体时,应包括转运蛋白工程。