Suppr超能文献

40S核糖体亚基募集至丙型肝炎病毒内部核糖体进入位点的动力学途径。

Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site.

作者信息

Fuchs Gabriele, Petrov Alexey N, Marceau Caleb D, Popov Lauren M, Chen Jin, O'Leary Seán E, Wang Richard, Carette Jan E, Sarnow Peter, Puglisi Joseph D

机构信息

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124;

Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126; and.

出版信息

Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):319-25. doi: 10.1073/pnas.1421328111. Epub 2014 Dec 16.

Abstract

Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.

摘要

翻译起始可通过多种途径发生。为了用单分子方法描绘这些途径,需要荧光标记的核糖体亚基。在这里,我们在核糖体蛋白eS25(RPS25)处用荧光SNAP标签标记人40S核糖体亚基。所得的核糖体亚基可在活细胞和体外进行特异性标记。利用RPS25与丙型肝炎病毒(HCV)内部核糖体进入位点(IRES)的结构域II之间的单分子荧光共振能量转移(FRET),我们测量了40S亚基到达HCV IRES的速率。我们的数据支持HCV IRES招募到40S亚基的单步模型,在起始时间尺度上是不可逆的。我们进一步证明,结合后,40S:HCV IRES复合物在构象上是动态的,经历缓慢的大规模重排。添加翻译提取物可抑制这些波动,使复合物在80S组装途径上形成单一构象。这些发现表明,40S:HCV IRES复合物的形成伴随着动态构象重排,这些重排可能受起始因子的调节。

相似文献

5
HCV IRES Captures an Actively Translating 80S Ribosome.HCV IRES 捕获正在翻译的活跃 80S 核糖体。
Mol Cell. 2019 Jun 20;74(6):1205-1214.e8. doi: 10.1016/j.molcel.2019.04.022. Epub 2019 May 9.
8
Hepatitis C Virus Translation Regulation.丙型肝炎病毒翻译调控。
Int J Mol Sci. 2020 Mar 27;21(7):2328. doi: 10.3390/ijms21072328.

引用本文的文献

2
Partners in crime: Proteins implicated in RNA repeat expansion diseases.共犯:与 RNA 重复扩展疾病相关的蛋白质。
Wiley Interdiscip Rev RNA. 2022 Jul;13(4):e1709. doi: 10.1002/wrna.1709. Epub 2022 Feb 28.
9
A memory of eS25 loss drives resistance phenotypes.eS25 缺失会产生记忆,从而驱动抵抗表型。
Nucleic Acids Res. 2020 Jul 27;48(13):7279-7297. doi: 10.1093/nar/gkaa444.
10
Hepatitis C Virus Translation Regulation.丙型肝炎病毒翻译调控。
Int J Mol Sci. 2020 Mar 27;21(7):2328. doi: 10.3390/ijms21072328.

本文引用的文献

1
Dynamic recognition of the mRNA cap by Saccharomyces cerevisiae eIF4E.酿酒酵母 eIF4E 对 mRNA 帽的动态识别。
Structure. 2013 Dec 3;21(12):2197-207. doi: 10.1016/j.str.2013.09.016. Epub 2013 Oct 31.
3
Rate-limiting steps in yeast protein translation.酵母蛋白翻译中的限速步骤。
Cell. 2013 Jun 20;153(7):1589-601. doi: 10.1016/j.cell.2013.05.049.
7
RNA-guided human genome engineering via Cas9.通过 Cas9 进行 RNA 引导的人类基因组工程。
Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.
10
The structure of the eukaryotic ribosome at 3.0 Å resolution.真核生物核糖体的 3.0 Å 分辨率结构。
Science. 2011 Dec 16;334(6062):1524-9. doi: 10.1126/science.1212642. Epub 2011 Nov 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验