Suppr超能文献

用于家族数据中罕见变异分析的广义最小二乘法框架。

A generalized least-squares framework for rare-variant analysis in family data.

作者信息

Li Dalin, Rotter Jerome I, Guo Xiuqing

机构信息

Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.

David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA ; Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.

出版信息

BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S28. doi: 10.1186/1753-6561-8-S1-S28. eCollection 2014.

Abstract

Rare variants may, in part, explain some of the hereditability missing in current genome-wide association studies. Many gene-based rare-variant analysis approaches proposed in recent years are aimed at population-based samples, although analysis strategies for family-based samples are clearly warranted since the family-based design has the potential to enhance our ability to enrich for rare causal variants. We have recently developed the generalized least squares, sequence kernel association test, or GLS-SKAT, approach for the rare-variant analyses in family samples, in which the kinship matrix that was computed from the high dimension genetic data was used to decorrelate the family structure. We then applied the SKAT-O approach for gene-/region-based inference in the decorrelated data. In this study, we applied this GLS-SKAT method to the systolic blood pressure data in the simulated family sample distributed by the Genetic Analysis Workshop 18. We compared the GLS-SKAT approach to the rare-variant analysis approach implemented in family-based association test-v1 and demonstrated that the GLS-SKAT approach provides superior power and good control of type I error rate.

摘要

罕见变异可能在一定程度上解释了当前全基因组关联研究中缺失的部分遗传性。近年来提出的许多基于基因的罕见变异分析方法都针对基于人群的样本,不过基于家系样本的分析策略显然也很有必要,因为家系设计有可能增强我们富集罕见致病变异的能力。我们最近开发了广义最小二乘序列核关联检验(GLS-SKAT)方法,用于家系样本中的罕见变异分析,该方法利用从高维遗传数据计算得到的亲缘关系矩阵来消除家系结构的相关性。然后我们将SKAT-O方法应用于去相关数据中基于基因/区域的推断。在本研究中,我们将这种GLS-SKAT方法应用于遗传分析研讨会18发布的模拟家系样本中的收缩压数据。我们将GLS-SKAT方法与基于家系关联检验-v1中实施的罕见变异分析方法进行了比较,结果表明GLS-SKAT方法具有更高的检验效能和对I型错误率的良好控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5eb/4143681/6e563fe8304d/1753-6561-8-S1-S28-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验