Palchesko Rachelle N, Szymanski John M, Sahu Amrita, Feinberg Adam W
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA ; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Cell Mol Bioeng. 2014 Sep;7(3):355-368. doi: 10.1007/s12195-014-0348-5.
Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions can be difficult because the extracellular matrix (ECM) proteins that adsorb to cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to . Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments.
细胞与基质的相互作用对于细胞在组织中的物理整合以及不溶性机械敏感信号网络的功能至关重要。研究这些相互作用可能具有挑战性,因为吸附在细胞培养表面的细胞外基质(ECM)蛋白无法完全重现心肌细胞和内皮细胞等细胞所附着的富含ECM的基底膜。为了解决这一限制,我们开发了一种表面引发的组装工艺,将ECM蛋白工程化为纳米结构的微米级薄片,这些薄片可以包裹在单个细胞和小细胞聚集体周围,以提供功能性和指导性的基质微环境。与目前使用藻酸盐、纤维蛋白或其他水凝胶的细胞封装技术不同,我们工程化的ECM在密度和厚度上与天然基膜相似,并且可以使用纤连蛋白、层粘连蛋白、纤维蛋白原和/或IV型胶原等蛋白质在结构和组成上进行定制。包括C2C12成肌细胞、牛角膜内皮细胞和心肌细胞在内的一系列细胞在包裹过程中均能保持高活力存活。此外,我们证明,与未封装的对照相比,工程化的ECM在二维和三维微环境中调节细胞骨架结构、细胞与基质粘附的稳定性以及细胞行为。