IEEE Trans Med Imaging. 2015 May;34(5):1164-76. doi: 10.1109/TMI.2014.2380830. Epub 2014 Dec 18.
In this work we present a framework for reliably detecting significant differences in quantitative magnetic resonance imaging and evaluate it with diffusion tensor imaging (DTI) experiments. As part of this framework we propose a new spatially regularized maximum likelihood estimator that simultaneously estimates the quantitative parameters and the spatially-smoothly-varying noise level from the acquisitions. The noise level estimation method does not require repeated acquisitions. We show that the amount of regularization in this method can be set a priori to achieve a desired coefficient of variation of the estimated noise level. The noise level estimate allows the construction of a Cramér-Rao-lower-bound based test statistic that reliably assesses the significance of differences between voxels within a scan or across different scans. We show that the regularized noise level estimate improves upon existing methods and results in a substantially increased precision of the uncertainty estimates of the DTI parameters. It enables correct specification of the null distribution of the test statistic and with it the test statistic obtains the highest sensitivity and specificity. The source code of the estimation framework, test statistic and experiment scripts are made available to the community.
在这项工作中,我们提出了一个可靠检测定量磁共振成像中显著差异的框架,并通过扩散张量成像 (DTI) 实验对其进行了评估。作为该框架的一部分,我们提出了一种新的空间正则化最大似然估计器,该估计器可以同时从采集数据中估计定量参数和空间平滑变化的噪声水平。噪声水平估计方法不需要重复采集。我们表明,该方法中的正则化量可以预先设置,以达到所需的估计噪声水平变化系数。噪声水平估计允许构建基于克拉美罗下限的检验统计量,从而可靠地评估扫描内或不同扫描之间体素之间差异的显著性。我们表明,正则化噪声水平估计优于现有方法,并且可以显著提高 DTI 参数不确定性估计的精度。它能够正确指定检验统计量的零分布,从而使检验统计量获得最高的灵敏度和特异性。该估计框架、检验统计量和实验脚本的源代码已提供给社区。