Edelman Nathaniel B, Fritz Tanja, Nimpf Simon, Pichler Paul, Lauwers Mattias, Hickman Robert W, Papadaki-Anastasopoulou Artemis, Ushakova Lyubov, Heuser Thomas, Resch Guenter P, Saunders Martin, Shaw Jeremy A, Keays David A
Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria;
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):262-7. doi: 10.1073/pnas.1407915112. Epub 2014 Dec 22.
The cellular basis of the magnetic sense remains an unsolved scientific mystery. One theory that aims to explain how animals detect the magnetic field is the magnetite hypothesis. It argues that intracellular crystals of the iron oxide magnetite (Fe3O4) are coupled to mechanosensitive channels that elicit neuronal activity in specialized sensory cells. Attempts to find these primary sensors have largely relied on the Prussian Blue stain that labels cells rich in ferric iron. This method has proved problematic as it has led investigators to conflate iron-rich macrophages with magnetoreceptors. An alternative approach developed by Eder et al. [Eder SH, et al. (2012) Proc Natl Acad Sci USA 109(30):12022-12027] is to identify candidate magnetoreceptive cells based on their magnetic moment. Here, we explore the utility of this method by undertaking a screen for magnetic cells in the pigeon. We report the identification of a small number of cells (1 in 476,000) with large magnetic moments (8-106 fAm(2)) from various tissues. The development of single-cell correlative light and electron microscopy (CLEM) coupled with electron energy loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) permitted subcellular analysis of magnetic cells. This revealed the presence of extracellular structures composed of iron, titanium, and chromium accounting for the magnetic properties of these cells. Application of single-cell CLEM to magnetic cells from the trout failed to identify any intracellular structures consistent with biogenically derived magnetite. Our work illustrates the need for new methods to test the magnetite hypothesis of magnetosensation.
磁觉的细胞基础仍然是一个未解的科学谜团。一种旨在解释动物如何检测磁场的理论是磁铁矿假说。该假说认为,氧化铁磁铁矿(Fe3O4)的细胞内晶体与机械敏感通道相连,这些通道会引发特殊感觉细胞中的神经元活动。寻找这些主要传感器的尝试在很大程度上依赖于普鲁士蓝染色,该染色可标记富含三价铁的细胞。事实证明,这种方法存在问题,因为它导致研究人员将富含铁的巨噬细胞与磁感受器混为一谈。埃德尔等人[埃德尔SH等人(2012年)《美国国家科学院院刊》109(30):12022 - 12027]开发的另一种方法是根据候选磁感受细胞的磁矩来识别它们。在这里,我们通过对鸽子中的磁性细胞进行筛选来探索这种方法的实用性。我们报告了从各种组织中鉴定出少量具有大磁矩(8 - 106 fAm(2))的细胞(476,000个细胞中有1个)。单细胞相关光电子显微镜(CLEM)与电子能量损失谱(EELS)和能量过滤透射电子显微镜(EFTEM)相结合的技术发展,使得对磁性细胞进行亚细胞分析成为可能。这揭示了由铁、钛和铬组成的细胞外结构的存在,这些结构解释了这些细胞的磁性特性。将单细胞CLEM应用于鳟鱼的磁性细胞,未能识别出任何与生物源磁铁矿一致的细胞内结构。我们的工作表明需要新的方法来检验磁觉的磁铁矿假说。