Suppr超能文献

鞭毛开关复合体中FliM和FliG的组装状态。

Assembly states of FliM and FliG within the flagellar switch complex.

作者信息

Sircar Ria, Borbat Peter P, Lynch Michael J, Bhatnagar Jaya, Beyersdorf Matthew S, Halkides Christopher J, Freed Jack H, Crane Brian R

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Mol Biol. 2015 Feb 27;427(4):867-886. doi: 10.1016/j.jmb.2014.12.009. Epub 2014 Dec 20.

Abstract

At the base of the bacterial flagella, a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, we have investigated interactions between FliM and FliG from Thermotoga maritima with X-ray crystallography and pulsed dipolar ESR spectroscopy (PDS). A new crystal structure of an 11-unit FliG:FliM complex produces a large arc with a curvature consistent with the dimensions of the C-ring. Previously determined structures along with this new structure provided a basis to test switch complex assembly models. PDS combined with mutational studies and targeted cross-linking reveal that FliM and FliG interact through their middle domains to form both parallel and antiparallel arrangements in solution. Residue substitutions at predicted interfaces disrupt higher-order complexes that are primarily mediated by contacts between the C-terminal domain of FliG and the middle domain of a neighboring FliG molecule. Spin separations among multi-labeled components fit a self-consistent model that agree well with electron microscopy images of the C-ring. An activated form of the response regulator CheY destabilizes the parallel arrangement of FliM molecules to perturb FliG alignment in a process that may reflect the onset of rotation switching. These data suggest a model of C-ring assembly in which intermolecular contacts among FliG domains provide a template for FliM assembly and cooperative transitions.

摘要

在细菌鞭毛的基部,一个细胞质转子(C环)产生扭矩并响应刺激而反转旋转方向。C环主要由蛋白质FliG、FliM和FliN的多个拷贝组成,它们共同构成了开关复合体。为了帮助解决有关C环结构的悬而未决的问题,我们利用X射线晶体学和脉冲偶极电子顺磁共振光谱(PDS)研究了嗜热栖热菌中FliM和FliG之间的相互作用。一种新的11单元FliG:FliM复合体的晶体结构产生了一个大弧,其曲率与C环的尺寸一致。先前确定的结构以及这个新结构为测试开关复合体组装模型提供了基础。PDS结合突变研究和靶向交联表明,FliM和FliG通过它们的中间结构域相互作用,在溶液中形成平行和反平行排列。预测界面处的残基取代破坏了高阶复合体,这些复合体主要由FliG的C末端结构域与相邻FliG分子的中间结构域之间的接触介导。多标记组分之间的自旋分离符合一个自洽模型,该模型与C环的电子显微镜图像非常吻合。响应调节因子CheY的一种激活形式使FliM分子的平行排列不稳定,从而在一个可能反映旋转切换开始的过程中扰乱FliG的排列。这些数据提出了一个C环组装模型,其中FliG结构域之间的分子间接触为FliM组装和协同转变提供了一个模板。

相似文献

1
Assembly states of FliM and FliG within the flagellar switch complex.
J Mol Biol. 2015 Feb 27;427(4):867-886. doi: 10.1016/j.jmb.2014.12.009. Epub 2014 Dec 20.
2
Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family.
J Biol Chem. 2013 May 10;288(19):13493-502. doi: 10.1074/jbc.M112.445171. Epub 2013 Mar 26.
3
Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor.
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11886-91. doi: 10.1073/pnas.0602811103. Epub 2006 Aug 1.
4
Structural insight into the rotational switching mechanism of the bacterial flagellar motor.
PLoS Biol. 2011 May;9(5):e1000616. doi: 10.1371/journal.pbio.1000616. Epub 2011 May 10.
5
Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG.
EMBO J. 2002 Jul 1;21(13):3225-34. doi: 10.1093/emboj/cdf332.
6
Architecture of the flagellar rotor.
EMBO J. 2011 Jun 14;30(14):2962-71. doi: 10.1038/emboj.2011.188.
8
Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.
PLoS One. 2015 Nov 12;10(11):e0142407. doi: 10.1371/journal.pone.0142407. eCollection 2015.
9
Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor.
Biochem Biophys Res Commun. 2018 Jan 29;496(1):12-17. doi: 10.1016/j.bbrc.2017.12.118. Epub 2017 Dec 30.
10
Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima.
J Bacteriol. 2005 Apr;187(8):2890-902. doi: 10.1128/JB.187.8.2890-2902.2005.

引用本文的文献

2
CryoEM structures reveal how the bacterial flagellum rotates and switches direction.
Nat Microbiol. 2024 May;9(5):1271-1281. doi: 10.1038/s41564-024-01674-1. Epub 2024 Apr 17.
4
Precise Measurement of the Stoichiometry of the Adaptive Bacterial Flagellar Switch.
mBio. 2023 Apr 25;14(2):e0018923. doi: 10.1128/mbio.00189-23. Epub 2023 Mar 22.
7
Structural Conservation and Adaptation of the Bacterial Flagella Motor.
Biomolecules. 2020 Oct 29;10(11):1492. doi: 10.3390/biom10111492.
8
The Architectural Dynamics of the Bacterial Flagellar Motor Switch.
Biomolecules. 2020 May 29;10(6):833. doi: 10.3390/biom10060833.
9
Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation.
Nat Microbiol. 2020 Jul;5(7):966-975. doi: 10.1038/s41564-020-0703-3. Epub 2020 Apr 13.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Stoichiometry and turnover of the bacterial flagellar switch protein FliN.
mBio. 2014 Jul 1;5(4):e01216-14. doi: 10.1128/mBio.01216-14.
3
Structure and function of the bi-directional bacterial flagellar motor.
Biomolecules. 2014 Feb 18;4(1):217-34. doi: 10.3390/biom4010217.
4
Molecular architecture of the bacterial flagellar motor in cells.
Biochemistry. 2014 Jul 15;53(27):4323-33. doi: 10.1021/bi500059y. Epub 2014 Jul 1.
5
Structural basis of FliG-FliM interaction in Helicobacter pylori.
Mol Microbiol. 2013 May;88(4):798-812. doi: 10.1111/mmi.12222. Epub 2013 Apr 24.
6
Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family.
J Biol Chem. 2013 May 10;288(19):13493-502. doi: 10.1074/jbc.M112.445171. Epub 2013 Mar 26.
7
Ultrasensitivity of an adaptive bacterial motor.
J Mol Biol. 2013 May 27;425(10):1760-4. doi: 10.1016/j.jmb.2013.02.016. Epub 2013 Feb 26.
8
Conformational ensemble of the sodium-coupled aspartate transporter.
Nat Struct Mol Biol. 2013 Feb;20(2):215-21. doi: 10.1038/nsmb.2494. Epub 2013 Jan 20.
9
Improved Sensitivity for Long-Distance Measurements in Biomolecules: Five-Pulse Double Electron-Electron Resonance.
J Phys Chem Lett. 2013 Jan 3;4(1):170-175. doi: 10.1021/jz301788n. Epub 2012 Dec 19.
10
Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling.
J Mol Biol. 2013 Mar 11;425(5):886-901. doi: 10.1016/j.jmb.2012.12.011. Epub 2012 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验