Sircar Ria, Borbat Peter P, Lynch Michael J, Bhatnagar Jaya, Beyersdorf Matthew S, Halkides Christopher J, Freed Jack H, Crane Brian R
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA.
J Mol Biol. 2015 Feb 27;427(4):867-886. doi: 10.1016/j.jmb.2014.12.009. Epub 2014 Dec 20.
At the base of the bacterial flagella, a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, we have investigated interactions between FliM and FliG from Thermotoga maritima with X-ray crystallography and pulsed dipolar ESR spectroscopy (PDS). A new crystal structure of an 11-unit FliG:FliM complex produces a large arc with a curvature consistent with the dimensions of the C-ring. Previously determined structures along with this new structure provided a basis to test switch complex assembly models. PDS combined with mutational studies and targeted cross-linking reveal that FliM and FliG interact through their middle domains to form both parallel and antiparallel arrangements in solution. Residue substitutions at predicted interfaces disrupt higher-order complexes that are primarily mediated by contacts between the C-terminal domain of FliG and the middle domain of a neighboring FliG molecule. Spin separations among multi-labeled components fit a self-consistent model that agree well with electron microscopy images of the C-ring. An activated form of the response regulator CheY destabilizes the parallel arrangement of FliM molecules to perturb FliG alignment in a process that may reflect the onset of rotation switching. These data suggest a model of C-ring assembly in which intermolecular contacts among FliG domains provide a template for FliM assembly and cooperative transitions.
在细菌鞭毛的基部,一个细胞质转子(C环)产生扭矩并响应刺激而反转旋转方向。C环主要由蛋白质FliG、FliM和FliN的多个拷贝组成,它们共同构成了开关复合体。为了帮助解决有关C环结构的悬而未决的问题,我们利用X射线晶体学和脉冲偶极电子顺磁共振光谱(PDS)研究了嗜热栖热菌中FliM和FliG之间的相互作用。一种新的11单元FliG:FliM复合体的晶体结构产生了一个大弧,其曲率与C环的尺寸一致。先前确定的结构以及这个新结构为测试开关复合体组装模型提供了基础。PDS结合突变研究和靶向交联表明,FliM和FliG通过它们的中间结构域相互作用,在溶液中形成平行和反平行排列。预测界面处的残基取代破坏了高阶复合体,这些复合体主要由FliG的C末端结构域与相邻FliG分子的中间结构域之间的接触介导。多标记组分之间的自旋分离符合一个自洽模型,该模型与C环的电子显微镜图像非常吻合。响应调节因子CheY的一种激活形式使FliM分子的平行排列不稳定,从而在一个可能反映旋转切换开始的过程中扰乱FliG的排列。这些数据提出了一个C环组装模型,其中FliG结构域之间的分子间接触为FliM组装和协同转变提供了一个模板。