Chapy Hélène, Smirnova Maria, André Pascal, Schlatter Joël, Chiadmi Fouad, Couraud Pierre-Olivier, Scherrmann Jean-Michel, Declèves Xavier, Cisternino Salvatore
Variabilité de réponse aux psychotropes, INSERM, U1144, 75006 Paris, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Université Paris Descartes, UMR-S 1144, Paris, F-75006, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Université Paris Diderot, UMR-S 1144, Paris, F-75013, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Assistance publique hôpitaux de Paris, AP-HP, Jean Verdier, Bondy, F-93140, France (Drs. Schlatter, Chiadmi, Cisternino); INSERM, U1016, Institut Cochin, 75014, Paris, France (Dr. Couraud); CNRS, UMR8104, Paris, France (Dr. Couraud); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (Dr. Couraud).
Int J Neuropsychopharmacol. 2014 Oct 31;18(1):pyu001. doi: 10.1093/ijnp/pyu001.
The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier.
We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion.
Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter.
Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms.
可卡因进入大脑的速率是影响神经元可塑性和可卡因成瘾发展的关键因素。到目前为止,被动扩散一直被认为是可卡因穿越血脑屏障的唯一已知机制。
我们使用人脑血管内皮细胞系(hCMEC/D3)和原位小鼠颈动脉灌注重新评估了可卡因在血脑屏障的转运机制。
体内和体外可卡因转运研究均表明,载体介导的过程与被动扩散共存。在药理学暴露水平下,可卡因的被动扩散在小鼠中仅占总可卡因流入量的22.5%,在hCMEC/D3细胞中占5.9%,而载体介导的流入速率在体内比其被动扩散速率大3.4倍。这种载体介导转运的功能鉴定表明,一种质子反向转运体参与其中,该转运体具有先前鉴定的可乐定和尼古丁转运体的特性。功能特性表明,溶质载体(SLC)转运体Oct(Slc22a1 - 3)、Mate(Slc47a1)和Octn(Slc22a4 - 5)在体内和体外均不参与可卡因的转运。与苯甲酰爱康宁不同,苯海拉明、海洛因、曲马多、可卡因乙烯酯和去甲可卡因均强烈抑制可卡因转运。转运刺激研究表明,苯海拉明、尼古丁、3,4 - 亚甲基二氧苯丙胺(摇头丸)和卡西酮化合物3,4 - 亚甲基二氧吡咯戊酮(MDPV)也是可卡因转运体的底物。
血脑屏障处的可卡因转运涉及质子反向转运体通量,其在数量上比被动扩散重要得多。该转运体的分子鉴定和特性将为理解其在成瘾机制中的作用提供新工具。