Figueroa Diego F, Baco Amy R
Present address: Department of Biological Sciences, University of Texas, Brownsville, TX
Department of Earth, Ocean and Atmospheric Science, Florida State University.
Genome Biol Evol. 2014 Dec 24;7(1):391-409. doi: 10.1093/gbe/evu286.
We use full mitochondrial genomes to test the robustness of the phylogeny of the Octocorallia, to determine the evolutionary pathway for the five known mitochondrial gene rearrangements in octocorals, and to test the suitability of using mitochondrial genomes for higher taxonomic-level phylogenetic reconstructions. Our phylogeny supports three major divisions within the Octocorallia and show that Paragorgiidae is paraphyletic, with Sibogagorgia forming a sister branch to the Coralliidae. Furthermore, Sibogagorgia cauliflora has what is presumed to be the ancestral gene order in octocorals, but the presence of a pair of inverted repeat sequences suggest that this gene order was not conserved but rather evolved back to this apparent ancestral state. Based on this we recommend the resurrection of the family Sibogagorgiidae to fix the paraphyly of the Paragorgiidae. This is the first study to show that in the Octocorallia, mitochondrial gene orders have evolved back to an ancestral state after going through a gene rearrangement, with at least one of the gene orders evolving independently in different lineages. A number of studies have used gene boundaries to determine the type of mitochondrial gene arrangement present. However, our findings suggest that this method known as gene junction screening may miss evolutionary reversals. Additionally, substitution saturation analysis demonstrates that while whole mitochondrial genomes can be used effectively for phylogenetic analyses within Octocorallia, their utility at higher taxonomic levels within Cnidaria is inadequate. Therefore for phylogenetic reconstruction at taxonomic levels higher than subclass within the Cnidaria, nuclear genes will be required, even when whole mitochondrial genomes are available.
我们使用完整的线粒体基因组来测试八放珊瑚亚纲系统发育的稳健性,确定八放珊瑚中五种已知线粒体基因重排的进化途径,并测试使用线粒体基因组进行更高分类水平系统发育重建的适用性。我们的系统发育支持八放珊瑚亚纲内的三个主要分类,并表明柳珊瑚科是并系的,西伯加柳珊瑚属与珊瑚科形成姐妹分支。此外,菜花西伯加柳珊瑚具有八放珊瑚中假定的祖先基因顺序,但一对反向重复序列的存在表明这种基因顺序并不保守,而是进化回了这种明显的祖先状态。基于此,我们建议恢复西伯加柳珊瑚科,以修正柳珊瑚科的并系性。这是第一项表明在八放珊瑚亚纲中,线粒体基因顺序在经历基因重排后进化回祖先状态的研究,且至少有一个基因顺序在不同谱系中独立进化。许多研究使用基因边界来确定存在的线粒体基因排列类型。然而,我们的研究结果表明,这种称为基因连接筛选的方法可能会遗漏进化逆转。此外,替换饱和度分析表明,虽然完整的线粒体基因组可有效用于八放珊瑚亚纲内的系统发育分析,但它们在刺胞动物门内更高分类水平上的效用不足。因此,对于刺胞动物门内高于亚纲的分类水平的系统发育重建,即使有完整的线粒体基因组,也将需要核基因。