Suppr超能文献

血清学和住院数据的联合建模显示,高水平的既往免疫力和学校假期影响了2009年荷兰甲型流感大流行。

Joint modelling of serological and hospitalization data reveals that high levels of pre-existing immunity and school holidays shaped the influenza A pandemic of 2009 in the Netherlands.

作者信息

Te Beest Dennis E, Birrell Paul J, Wallinga Jacco, De Angelis Daniela, van Boven Michiel

机构信息

Centre for Infectious Disease Control, National Institute for Public Health and the Environment, PO Box 1, Bilthoven 3720AB, The Netherlands.

MRC Biostatistics Unit, Cambridge Institute of Public Health, CB2 0SR.

出版信息

J R Soc Interface. 2015 Feb 6;12(103). doi: 10.1098/rsif.2014.1244.

Abstract

Obtaining a quantitative understanding of the transmission dynamics of influenza A is important for predicting healthcare demand and assessing the likely impact of intervention measures. The pandemic of 2009 provides an ideal platform for developing integrative analyses as it has been studied intensively, and a wealth of data sources is available. Here, we analyse two complementary datasets in a disease transmission framework: cross-sectional serological surveys providing data on infection attack rates, and hospitalization data that convey information on the timing and duration of the pandemic. We estimate key epidemic determinants such as infection and hospitalization rates, and the impact of a school holiday. In contrast to previous approaches, our novel modelling of serological data with mixture distributions provides a probabilistic classification of individual samples (susceptible, immune and infected), propagating classification uncertainties to the transmission model and enabling serological classifications to be informed by hospitalization data. The analyses show that high levels of immunity among persons 20 years and older provide a consistent explanation of the skewed attack rates observed during the pandemic and yield precise estimates of the probability of hospitalization per infection (1-4 years: 0.00096 (95%CrI: 0.00078-0.0012); 5-19 years: 0.00036 (0.00031-0.0044); 20-64 years: 0.0015 (0.00091-0.0020); 65+ years: 0.0084 (0.0028-0.016)). The analyses suggest that in The Netherlands, the school holiday period reduced the number of infectious contacts between 5- and 9-year-old children substantially (estimated reduction: 54%; 95%CrI: 29-82%), thereby delaying the unfolding of the pandemic in The Netherlands by approximately a week.

摘要

对甲型流感的传播动态进行定量理解,对于预测医疗需求和评估干预措施的可能影响至关重要。2009年的大流行提供了一个开展综合分析的理想平台,因为它得到了深入研究,并且有大量可用的数据源。在此,我们在疾病传播框架中分析两个互补的数据集:提供感染发病率数据的横断面血清学调查,以及传达大流行时间和持续时间信息的住院数据。我们估计关键的流行决定因素,如感染率和住院率,以及学校假期的影响。与以往方法不同,我们用混合分布对血清学数据进行的新颖建模提供了个体样本(易感、免疫和感染)的概率分类,将分类不确定性传播到传播模型,并使血清学分类能够由住院数据提供信息。分析表明,20岁及以上人群的高免疫力一致解释了大流行期间观察到的发病率偏差,并得出每次感染住院概率的精确估计值(1 - 4岁:0.00096(95%可信区间:0.00078 - 0.0012);5 - 19岁:0.00036(0.00031 - 0.0044);20 - 64岁:0.0015(0.00091 - 0.0020);65岁及以上:0.0084(0.0028 - 0.016))。分析表明,在荷兰,学校假期期间5至9岁儿童之间的传染性接触数量大幅减少(估计减少:54%;95%可信区间:29 - 82%),从而使荷兰大流行的展开推迟了约一周。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa17/4305427/08ecba310e1d/rsif20141244-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验