Suppr超能文献

骨骼分子尺度组织的能量基础。

Energetic basis for the molecular-scale organization of bone.

作者信息

Tao Jinhui, Battle Keith C, Pan Haihua, Salter E Alan, Chien Yung-Ching, Wierzbicki Andrzej, De Yoreo James J

机构信息

Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352;

Department of Chemistry, University of South Alabama, Mobile, AL 36688;

出版信息

Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):326-31. doi: 10.1073/pnas.1404481112. Epub 2014 Dec 24.

Abstract

The remarkable properties of bone derive from a highly organized arrangement of coaligned nanometer-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the nonmineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and atomic force microscopy (AFM) observations of collagen adsorption on single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and transmission electron microscopy (TEM) analyses of native tissues shows that only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations, and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular-scale organization of bone.

摘要

骨骼的非凡特性源于在纤维状胶原基质中高度有序排列的纳米级共线磷灰石血小板。这种排列的起源尚不清楚,仅羟基磷灰石(HAP)和非矿化胶原纤维的晶体结构无法提供解释。此外,关于胶原 - 磷灰石相互作用能知之甚少,而这种相互作用能会强烈影响复合材料的分子尺度组织及其最终的力学性能。我们通过结合对结合能的动态力谱(DFS)测量、结合的分子动力学(MD)模拟以及对骨形成中四个潜在重要矿相的磷酸钙单晶上胶原吸附的原子力显微镜(AFM)观察,来研究胶原 - 矿物质相互作用。在所有情况下,我们都观察到胶原结合存在强烈的优先取向,但将观察到的取向与天然组织的透射电子显微镜(TEM)分析进行比较后发现,只有缺钙磷灰石(CDAP)提供了与胶原一致的界面。MD模拟预测的胶原优先取向与观察结果相符,MD和DFS的结果都揭示了由于多个结合位点导致的较大结合能值。这些发现调和了骨矿物质的羟基磷灰石或碳酸化磷灰石(CAP)模型中固有的明显矛盾,并为骨的分子尺度组织提供了能量学依据。

相似文献

1
Energetic basis for the molecular-scale organization of bone.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):326-31. doi: 10.1073/pnas.1404481112. Epub 2014 Dec 24.
2
Mineralised tissues as nanomaterials: analysis by atomic force microscopy.
IEE Proc Nanobiotechnol. 2005 Oct;152(5):183-6. doi: 10.1049/ip-nbt:20050004.
3
In vitro models of collagen biomineralization.
J Struct Biol. 2013 Aug;183(2):258-69. doi: 10.1016/j.jsb.2013.04.003. Epub 2013 Apr 15.
5
The nano-morphological relationships between apatite crystals and collagen fibrils in ivory dentine.
Biomaterials. 2010 Jul;31(19):5275-86. doi: 10.1016/j.biomaterials.2010.03.025. Epub 2010 Apr 9.
6
High-resolution AFM imaging of intact and fractured trabecular bone.
Bone. 2004 Jul;35(1):4-10. doi: 10.1016/j.bone.2004.02.024.
8
The Mineral-Collagen Interface in Bone.
Calcif Tissue Int. 2015 Sep;97(3):262-80. doi: 10.1007/s00223-015-9984-6. Epub 2015 Apr 1.
10
Lateral packing of mineral crystals in bone collagen fibrils.
Biophys J. 2008 Aug;95(4):1985-92. doi: 10.1529/biophysj.107.128355. Epub 2008 Mar 21.

引用本文的文献

1
Investigating the influence of mineral content changes on mechanical properties through ligament insertion.
Front Aging. 2025 Jul 7;6:1556577. doi: 10.3389/fragi.2025.1556577. eCollection 2025.
2
Hierarchically oriented organization in supramolecular peptide crystals.
Protein Pept Lett. 2019 Sep 10;3(10):567-588. doi: 10.1038/s41570-019-0129-8.
4
Self-Assembly of Elastin-like Polypeptide Brushes on Silica Surfaces and Nanoparticles.
Biomacromolecules. 2021 May 10;22(5):1966-1979. doi: 10.1021/acs.biomac.1c00067. Epub 2021 Apr 19.
5
Intermolecular channels direct crystal orientation in mineralized collagen.
Nat Commun. 2020 Oct 8;11(1):5068. doi: 10.1038/s41467-020-18846-2.
6
Chiral Tartaric Acid Improves Fracture Toughness of Bioactive Brushite-Collagen Bone Cements.
ACS Appl Bio Mater. 2020 Aug 17;3(8):5056-5066. doi: 10.1021/acsabm.0c00555. Epub 2020 Jul 6.
7
Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state.
Sci Adv. 2020 Mar 25;6(13):eaay7608. doi: 10.1126/sciadv.aay7608. eCollection 2020 Mar.
8
Controlling protein assembly on inorganic crystals through designed protein interfaces.
Nature. 2019 Jul;571(7764):251-256. doi: 10.1038/s41586-019-1361-6. Epub 2019 Jul 10.
9
Transformation of amorphous calcium phosphate to bone-like apatite.
Nat Commun. 2018 Oct 9;9(1):4170. doi: 10.1038/s41467-018-06570-x.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1304-9. doi: 10.1073/pnas.1312369111. Epub 2014 Jan 13.
3
Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation.
Chemistry. 2013 Oct 25;19(44):14918-24. doi: 10.1002/chem.201302835. Epub 2013 Sep 20.
4
Molecular mechanics of mineralized collagen fibrils in bone.
Nat Commun. 2013;4:1724. doi: 10.1038/ncomms2720.
6
Interpreting the widespread nonlinear force spectra of intermolecular bonds.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13573-8. doi: 10.1073/pnas.1202946109. Epub 2012 Aug 6.
8
Single-molecule determination of the face-specific adsorption of Amelogenin's C-terminus on hydroxyapatite.
Angew Chem Int Ed Engl. 2011 Aug 8;50(33):7541-5. doi: 10.1002/anie.201100181. Epub 2011 Jun 27.
9
Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.
Nano Lett. 2011 Feb 9;11(2):757-66. doi: 10.1021/nl103943u. Epub 2011 Jan 5.
10
The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.
Nat Mater. 2010 Dec;9(12):1004-9. doi: 10.1038/nmat2875. Epub 2010 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验