Department of Biochemistry, University of Washington, Seattle, WA, USA.
Institute for Protein Design, University of Washington, Seattle, WA, USA.
Nature. 2019 Jul;571(7764):251-256. doi: 10.1038/s41586-019-1361-6. Epub 2019 Jul 10.
The ability of proteins and other macromolecules to interact with inorganic surfaces is essential to biological function. The proteins involved in these interactions are highly charged and often rich in carboxylic acid side chains, but the structures of most protein-inorganic interfaces are unknown. We explored the possibility of systematically designing structured protein-mineral interfaces, guided by the example of ice-binding proteins, which present arrays of threonine residues (matched to the ice lattice) that order clathrate waters into an ice-like structure. Here we design proteins displaying arrays of up to 54 carboxylate residues geometrically matched to the potassium ion (K) sublattice on muscovite mica (001). At low K concentration, individual molecules bind independently to mica in the designed orientations, whereas at high K concentration, the designs form two-dimensional liquid-crystal phases, which accentuate the inherent structural bias in the muscovite lattice to produce protein arrays ordered over tens of millimetres. Incorporation of designed protein-protein interactions preserving the match between the proteins and the K lattice led to extended self-assembled structures on mica: designed end-to-end interactions produced micrometre-long single-protein-diameter wires and a designed trimeric interface yielded extensive honeycomb arrays. The nearest-neighbour distances in these hexagonal arrays could be set digitally between 7.5 and 15.9 nanometres with 2.1-nanometre selectivity by changing the number of repeat units in the monomer. These results demonstrate that protein-inorganic lattice interactions can be systematically programmed and set the stage for designing protein-inorganic hybrid materials.
蛋白质和其他生物大分子与无机表面相互作用的能力是生物功能的基础。这些相互作用涉及的蛋白质通常带有很高的电荷,并且富含羧酸侧链,但大多数蛋白质-无机界面的结构仍然未知。受冰结合蛋白的启发,我们探索了系统设计具有结构的蛋白质-矿物界面的可能性,这些蛋白呈现出一系列丝氨酸残基(与冰晶格匹配),将笼形水有序排列成类似冰的结构。在这里,我们设计了展示多达 54 个羧酸盐残基的蛋白质阵列,这些残基在几何上与白云母(001)上的钾离子(K)亚晶格匹配。在低 K 浓度下,单个分子以设计的取向独立地结合到云母上,而在高 K 浓度下,这些设计形成二维液晶相,突出了白云母晶格的固有结构偏向,从而在数十毫米范围内对蛋白质阵列进行有序排列。保留蛋白质与 K 晶格之间匹配的设计的蛋白质-蛋白质相互作用导致在云母上形成扩展的自组装结构:设计的端到端相互作用产生了长达几微米的单蛋白直径的线,而设计的三聚体界面产生了广泛的蜂窝状阵列。通过改变单体中的重复单元数,可以在这些六方阵列中以 7.5 到 15.9 纳米的数字设置最近邻距离,选择性为 2.1 纳米。这些结果表明,蛋白质-无机晶格相互作用可以被系统地编程,并为设计蛋白质-无机杂化材料奠定了基础。