Suppr超能文献

硫化铅/磷化镉量子异质结胶体量子点太阳能电池。

PbS/Cd₃P₂ quantum heterojunction colloidal quantum dot solar cells.

作者信息

Cao Hefeng, Liu Zeke, Zhu Xiangxiang, Peng Jun, Hu Long, Xu Songman, Luo Miao, Ma Wanli, Tang Jiang, Liu Huan

机构信息

School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, People's Republic of China.

出版信息

Nanotechnology. 2015 Jan 21;26(3):035401. doi: 10.1088/0957-4484/26/3/035401. Epub 2014 Dec 30.

Abstract

Here, we demonstrated the quantum heterojunction colloidal quantum dot (CQD) solar cells employing the PbS CQDs/Cd3P2 CQDs architecture in which both the p-type PbS and n-type Cd3P2 CQD layers are quantum-tunable and solution-processed light absorbers. We synthesized well-crystallized and nearly monodispersed tetragonal Cd3P2 CQDs and then engineered their energy band alignment with the p-type PbS by tuning the dot size and hence the bandgap to achieve efficient light absorbing and charge separation. We further optimized the device through the Ag-doping strategy of PbS CQDs that may leverage an expanded depletion region in the n-layer, which greatly enhances the photocurrent. The resulting devices showed an efficiency of 1.5%.

摘要

在此,我们展示了采用PbS量子点/Cd3P2量子点结构的量子异质结胶体量子点(CQD)太阳能电池,其中p型PbS和n型Cd3P2量子点层均为量子可调谐且可通过溶液法制备的光吸收体。我们合成了结晶良好且近乎单分散的四方相Cd3P2量子点,然后通过调整量子点尺寸进而调整带隙来设计其与p型PbS的能带排列,以实现高效的光吸收和电荷分离。我们通过PbS量子点的银掺杂策略进一步优化了器件,该策略可利用n层中扩展的耗尽区,从而极大地增强光电流。所得器件的效率为1.5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验