Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin 2, Ireland.
Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
J Control Release. 2015 Feb 28;200:42-51. doi: 10.1016/j.jconrel.2014.12.034. Epub 2014 Dec 28.
Manipulation of gene expression through the use of microRNAs (miRNAs) offers tremendous potential for the field of tissue engineering. However, the lack of sufficient site-specific and bioactive delivery systems has severely hampered the clinical translation of miRNA-based therapies. In this study, we developed a novel non-viral bioactive delivery platform for miRNA mimics and antagomiRs to allow for a vast range of therapeutic applications. By combining nanohydroxyapatite (nHA) particles with reporter miRNAs (nanomiRs) and collagen-nanohydroxyapatite scaffolds, this work introduces the first non-viral, non-lipid platform to date, capable of efficient delivery of mature miRNA molecules to human mesenchymal stem cells (hMSCs), a particularly difficult cell type to transfect effectively, with minimal treatment-associated cytotoxicity. Firstly, miRNAs were successfully delivered to hMSCs in monolayer, with internalisation efficiencies of 17.4 and 39.6% for nanomiR-mimics and nanoantagomiRs respectively, and both nanomiR-mimics and nanoantagomiRs yielded sustained interfering activity of greater than 90% in monolayer over 7 days. When applied to 3D scaffolds, significant RNA interference of 20% for nanomiR-mimics and 88.4% for nanoantagomiRs was achieved with no cytotoxicity issues over a 7 day period. In summary, in-house synthesised non-viral nHA particles efficiently delivered reporter miRNAs both in monolayer and on scaffolds demonstrating the immense potential of this innovative miRNA-activated scaffold system for tissue engineering applications.
通过使用 microRNAs(miRNAs)来操纵基因表达为组织工程领域提供了巨大的潜力。然而,缺乏足够的特异性和生物活性的递送系统严重阻碍了基于 miRNA 的治疗方法的临床转化。在这项研究中,我们开发了一种新型的非病毒生物活性 miRNA 模拟物和反义寡核苷酸的递送平台,允许进行广泛的治疗应用。通过将纳米羟基磷灰石(nHA)颗粒与报告 miRNA(nanomiRs)和胶原-纳米羟基磷灰石支架结合,这项工作首次引入了一种非病毒、非脂质的平台,能够有效地将成熟的 miRNA 分子递送到人类间充质干细胞(hMSCs)中,这是一种特别难以有效转染的细胞类型,同时具有最小的治疗相关细胞毒性。首先,miRNAs 被成功递送到单层 hMSCs 中,纳米 miRNA 模拟物和纳米反义寡核苷酸的内化效率分别为 17.4%和 39.6%,并且在单层中超过 7 天,两种纳米 miRNA 模拟物和纳米反义寡核苷酸都具有持续的干扰活性,超过 90%。当应用于 3D 支架时,纳米 miRNA 模拟物的 RNA 干扰达到了 20%,纳米反义寡核苷酸的 RNA 干扰达到了 88.4%,并且在 7 天内没有细胞毒性问题。总之,内部合成的非病毒 nHA 颗粒在单层和支架上都有效地递送了报告 miRNA,证明了这种创新的 miRNA 激活支架系统在组织工程应用中具有巨大的潜力。