Suppr超能文献

短时间吸气时的气流动力学

Dynamics of airflow in a short inhalation.

作者信息

Bates A J, Doorly D J, Cetto R, Calmet H, Gambaruto A M, Tolley N S, Houzeaux G, Schroter R C

出版信息

J R Soc Interface. 2015 Jan 6;12(102):20140880. doi: 10.1098/rsif.2014.0880.

Abstract

During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s⁻¹ peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions.

摘要

在快速吸气(如嗅吸)过程中,气道内的气流加速并迅速衰减。在从鼻子到支气管的人体模型中,研究了气流发展和吸入气体对流传输的后果。使用高分辨率模拟,对一次时长0.5秒、峰值流速1升/秒、吸入体积364毫升的嗅吸进行模拟,确定了气流转变的过程以及吸入的未吸收气体的推进情况。在鼻子中,气流分布经历三个阶段:(i)约50毫秒的初始瞬态,大致为鼻腔容积的填充时间;(ii)在大部分吸气过程中的准平衡阶段;(iii)终止阶段。气流转变在声门上区域20毫秒内开始,导致在整个吸气过程中持续存在大幅度波动;在鼻子中,接近峰值流速时出现的波动强度大大降低,并在气流衰减阶段减弱。气体浓度测量结果显示,鼻子中吸入气体的积累和排出不均匀。在隆突处,时间浓度曲线的形式既反映了剪切扩散,也反映了由于回流区域导致的气道填充缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d94/4277078/ebb785e83e82/rsif20140880-g1.jpg

相似文献

1
Dynamics of airflow in a short inhalation.
J R Soc Interface. 2015 Jan 6;12(102):20140880. doi: 10.1098/rsif.2014.0880.
2
Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.
Comput Biol Med. 2016 Feb 1;69:166-80. doi: 10.1016/j.compbiomed.2015.12.003. Epub 2015 Dec 17.
3
Transient Dynamics Simulation of Airflow in a CT-Scanned Human Airway Tree: More or Fewer Terminal Bronchi?
Comput Math Methods Med. 2017;2017:1969023. doi: 10.1155/2017/1969023. Epub 2017 Dec 3.
5
Flow simulation in the human upper respiratory tract.
Cell Biochem Biophys. 2002;37(1):27-36. doi: 10.1385/CBB:37:1:27.
6
Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages.
Toxicol Appl Pharmacol. 1997 Aug;145(2):388-98. doi: 10.1006/taap.1997.8206.
7
[Sneezing as a mechanical defence - a numerical simulation and analysis of the nasal flow].
Laryngorhinootologie. 2014 Nov;93(11):746-50. doi: 10.1055/s-0034-1385862. Epub 2014 Nov 4.
10
Flow distribution through human and canine airways during inhalation and exhalation.
J Appl Physiol (1985). 1989 Oct;67(4):1649-54. doi: 10.1152/jappl.1989.67.4.1649.

引用本文的文献

2
The influence of mouth opening on pharyngeal pressure loss and its underlying mechanism: A computational fluid dynamic analysis.
Front Bioeng Biotechnol. 2023 Jan 9;10:1081465. doi: 10.3389/fbioe.2022.1081465. eCollection 2022.
4
An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology.
Med Biol Eng Comput. 2022 Feb;60(2):365-391. doi: 10.1007/s11517-021-02446-3. Epub 2021 Dec 23.
6
The effect of decongestion on nasal airway patency and airflow.
Sci Rep. 2021 Jul 13;11(1):14410. doi: 10.1038/s41598-021-93769-6.
7
Subglottic Stenosis Position Affects Work of Breathing.
Laryngoscope. 2021 Apr;131(4):E1220-E1226. doi: 10.1002/lary.29169. Epub 2020 Oct 14.
8
Assessing Changes in Airflow and Energy Loss in a Progressive Tracheal Compression Before and After Surgical Correction.
Ann Biomed Eng. 2020 Feb;48(2):822-833. doi: 10.1007/s10439-019-02410-1. Epub 2019 Dec 2.
10
Pulmonary aerosol delivery and the importance of growth dynamics.
Ther Deliv. 2017 Dec;8(12):1051-1061. doi: 10.4155/tde-2017-0093.

本文引用的文献

1
What is normal nasal airflow? A computational study of 22 healthy adults.
Int Forum Allergy Rhinol. 2014 Jun;4(6):435-46. doi: 10.1002/alr.21319. Epub 2014 Mar 24.
2
Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction.
J Biomech. 2013 Oct 18;46(15):2634-43. doi: 10.1016/j.jbiomech.2013.08.007. Epub 2013 Aug 26.
3
Computed intranasal spray penetration: comparisons before and after nasal surgery.
Int Forum Allergy Rhinol. 2013 Jan;3(1):48-55. doi: 10.1002/alr.21070. Epub 2012 Aug 27.
4
Nasal inspiratory flow: at rest and sniffing.
Int Forum Allergy Rhinol. 2011 Mar-Apr;1(2):128-35. doi: 10.1002/alr.20021.
6
Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model.
Ann Biomed Eng. 2010 Dec;38(12):3550-71. doi: 10.1007/s10439-010-0110-7. Epub 2010 Jul 8.
7
On the assumption of steadiness of nasal cavity flow.
J Biomech. 2010 Apr 19;43(6):1081-5. doi: 10.1016/j.jbiomech.2009.12.008. Epub 2010 Jan 18.
8
Visual exploration of nasal airflow.
IEEE Trans Vis Comput Graph. 2009 Nov-Dec;15(6):1407-14. doi: 10.1109/TVCG.2009.198.
9
Inflow boundary profile prescription for numerical simulation of nasal airflow.
J R Soc Interface. 2010 Mar 6;7(44):515-27. doi: 10.1098/rsif.2009.0306. Epub 2009 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验