Suppr超能文献

贝叶斯样本量标准的比较:ACC、ALC和WOC。

Comparison of Bayesian Sample Size Criteria: ACC, ALC, and WOC.

作者信息

Cao Jing, Lee J Jack, Alber Susan

机构信息

Department of Statistical Science, Southern Methodist University, Dallas, Texas, 75275.

Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030.

出版信息

J Stat Plan Inference. 2009 Dec 1;139(12):4111-4122. doi: 10.1016/j.jspi.2009.05.041.

Abstract

A challenge for implementing performance based Bayesian sample size determination is selecting which of several methods to use. We compare three Bayesian sample size criteria: the average coverage criterion (ACC) which controls the coverage rate of fixed length credible intervals over the predictive distribution of the data, the average length criterion (ALC) which controls the length of credible intervals with a fixed coverage rate, and the worst outcome criterion (WOC) which ensures the desired coverage rate and interval length over all (or a subset of) possible datasets. For most models, the WOC produces the largest sample size among the three criteria, and sample sizes obtained by the ACC and the ALC are not the same. For Bayesian sample size determination for normal means and differences between normal means, we investigate, for the first time, the direction and magnitude of differences between the ACC and ALC sample sizes. For fixed hyperparameter values, we show that the difference of the ACC and ALC sample size depends on the nominal coverage, and not on the nominal interval length. There exists a threshold value of the nominal coverage level such that below the threshold the ALC sample size is larger than the ACC sample size, and above the threshold the ACC sample size is larger. Furthermore, the ACC sample size is more sensitive to changes in the nominal coverage. We also show that for fixed hyperparameter values, there exists an asymptotic constant ratio between the WOC sample size and the ALC (ACC) sample size. Simulation studies are conducted to show that similar relationships among the ACC, ALC, and WOC may hold for estimating binomial proportions. We provide a heuristic argument that the results can be generalized to a larger class of models.

摘要

实施基于性能的贝叶斯样本量确定面临的一个挑战是选择使用几种方法中的哪一种。我们比较了三种贝叶斯样本量标准:平均覆盖率标准(ACC),它控制固定长度可信区间在数据预测分布上的覆盖率;平均长度标准(ALC),它控制具有固定覆盖率的可信区间的长度;以及最坏结果标准(WOC),它确保在所有(或部分)可能的数据集中达到所需的覆盖率和区间长度。对于大多数模型,WOC在这三个标准中产生的样本量最大,并且通过ACC和ALC获得的样本量不相同。对于正态均值和正态均值之间差异的贝叶斯样本量确定,我们首次研究了ACC和ALC样本量之间差异的方向和大小。对于固定的超参数值,我们表明ACC和ALC样本量的差异取决于名义覆盖率,而不取决于名义区间长度。存在一个名义覆盖率水平的阈值,使得低于该阈值时ALC样本量大于ACC样本量,高于该阈值时ACC样本量更大。此外,ACC样本量对名义覆盖率的变化更敏感。我们还表明,对于固定的超参数值,WOC样本量与ALC(ACC)样本量之间存在渐近常数比。进行了模拟研究以表明在估计二项比例时,ACC、ALC和WOC之间可能存在类似的关系。我们提供了一个启发式的论点,即结果可以推广到更大类的模型。

相似文献

1
Comparison of Bayesian Sample Size Criteria: ACC, ALC, and WOC.
J Stat Plan Inference. 2009 Dec 1;139(12):4111-4122. doi: 10.1016/j.jspi.2009.05.041.
2
Bayesian sample size determination for coefficient of variation of normal distribution.
J Appl Stat. 2023 Apr 4;51(7):1271-1286. doi: 10.1080/02664763.2023.2197571. eCollection 2024.
3
Calibrated Bayesian Credible Intervals for Binomial Proportions.
J Stat Comput Simul. 2020;90(1):75-89. doi: 10.1080/00949655.2019.1672695. Epub 2019 Oct 8.
5
Calibrating the prior distribution for a normal model with conjugate prior.
J Stat Comput Simul. 2014;85(15):3108-3128. doi: 10.1080/00949655.2014.951855. Epub 2014 Sep 3.
6
Quantitative imaging biomarkers: Effect of sample size and bias on confidence interval coverage.
Stat Methods Med Res. 2018 Oct;27(10):3139-3150. doi: 10.1177/0962280217693662. Epub 2017 Feb 27.
7
Bayesian and mixed Bayesian/likelihood criteria for sample size determination.
Stat Med. 1997 Apr 15;16(7):769-81. doi: 10.1002/(sici)1097-0258(19970415)16:7<769::aid-sim495>3.0.co;2-v.
8
Value of sample size for computation of the Bayesian information criterion (BIC) in multilevel modeling.
Behav Res Methods. 2019 Feb;51(1):440-450. doi: 10.3758/s13428-018-1188-3.
9
A Bayesian method to estimate the optimal threshold of a longitudinal biomarker.
Biom J. 2010 Jun;52(3):333-47. doi: 10.1002/bimj.200900242.
10
Prediction intervals for overdispersed binomial data with application to historical controls.
Stat Med. 2019 Jun 30;38(14):2652-2663. doi: 10.1002/sim.8124. Epub 2019 Mar 5.

引用本文的文献

1
Anxiolysis for laceration repair in children: study protocol for an open-label multicenter adaptive trial (ALICE).
PLoS One. 2025 Jun 4;20(6):e0324515. doi: 10.1371/journal.pone.0324515. eCollection 2025.
2
Bayesian statistics for clinical research.
Lancet. 2024 Sep 14;404(10457):1067-1076. doi: 10.1016/S0140-6736(24)01295-9.
3
Bayesian sample size determination for coefficient of variation of normal distribution.
J Appl Stat. 2023 Apr 4;51(7):1271-1286. doi: 10.1080/02664763.2023.2197571. eCollection 2024.
6
Sample Size Requirements for Calibrated Approximate Credible Intervals for Proportions in Clinical Trials.
Int J Environ Res Public Health. 2021 Jan 12;18(2):595. doi: 10.3390/ijerph18020595.
8
Efficient and flexible simulation-based sample size determination for clinical trials with multiple design parameters.
Stat Methods Med Res. 2021 Mar;30(3):799-815. doi: 10.1177/0962280220975790. Epub 2020 Dec 2.
9
A Bayesian meta-analysis on prevalence of hepatitis B virus infection among Chinese volunteer blood donors.
PLoS One. 2013 Nov 13;8(11):e79203. doi: 10.1371/journal.pone.0079203. eCollection 2013.

本文引用的文献

1
Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men.
Am J Hypertens. 2004 Aug;17(8):701-6. doi: 10.1016/j.amjhyper.2004.03.674.
2
Bayesian techniques for sample size determination in clinical trials: a short review.
Stat Methods Med Res. 2003 Dec;12(6):489-504. doi: 10.1191/0962280203sm345oa.
3
Bayesian and mixed Bayesian/likelihood criteria for sample size determination.
Stat Med. 1997 Apr 15;16(7):769-81. doi: 10.1002/(sici)1097-0258(19970415)16:7<769::aid-sim495>3.0.co;2-v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验