Suppr超能文献

多图谱标签融合的最优权重

Optimal weights for multi-atlas label fusion.

作者信息

Wang Hongzhi, Suh Jung Wook, Pluta John, Altinay Murat, Yushkevich Paul

机构信息

PICSL, Department of Radiology, University of Pennsylvania, USA.

出版信息

Inf Process Med Imaging. 2011;22:73-84. doi: 10.1007/978-3-642-22092-0_7.

Abstract

Multi-atlas based segmentation has been applied widely in medical image analysis. For label fusion, previous studies show that image similarity-based local weighting techniques produce the most accurate results. However, these methods ignore the correlations between results produced by different atlases. Furthermore, they rely on pre-selected weighting models and ad hoc methods to choose model parameters. We propose a novel label fusion method to address these limitations. Our formulation directly aims at reducing the expectation of the combined error and can be efficiently solved in a closed form. In our hippocampus segmentation experiment, our method significantly outperforms similarity-based local weighting. Using 20 atlases, we produce results with 0.898 +/- 0.019 Dice overlap to manual labelings for controls.

摘要

基于多图谱的分割已在医学图像分析中得到广泛应用。对于标签融合,先前的研究表明,基于图像相似性的局部加权技术能产生最准确的结果。然而,这些方法忽略了不同图谱产生的结果之间的相关性。此外,它们依赖于预先选择的加权模型和临时方法来选择模型参数。我们提出了一种新颖的标签融合方法来解决这些局限性。我们的公式直接旨在降低组合误差的期望值,并且可以以封闭形式有效地求解。在我们的海马体分割实验中,我们的方法显著优于基于相似性的局部加权。使用20个图谱,我们得到的结果与对照组手动标注的骰子重叠率为0.898±0.019。

相似文献

1
Optimal weights for multi-atlas label fusion.
Inf Process Med Imaging. 2011;22:73-84. doi: 10.1007/978-3-642-22092-0_7.
2
Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models.
Neuroimage. 2013 Dec;83:335-45. doi: 10.1016/j.neuroimage.2013.06.006. Epub 2013 Jun 11.
3
Groupwise segmentation with multi-atlas joint label fusion.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):711-8. doi: 10.1007/978-3-642-40811-3_89.
4
A probabilistic, non-parametric framework for inter-modality label fusion.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):576-83. doi: 10.1007/978-3-642-40760-4_72.
5
A unified framework for cross-modality multi-atlas segmentation of brain MRI.
Med Image Anal. 2013 Dec;17(8):1181-91. doi: 10.1016/j.media.2013.08.001. Epub 2013 Aug 19.
6
Non-local statistical label fusion for multi-atlas segmentation.
Med Image Anal. 2013 Feb;17(2):194-208. doi: 10.1016/j.media.2012.10.002. Epub 2012 Nov 29.
7
Deformable atlas for multi-structure segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):743-50. doi: 10.1007/978-3-642-40811-3_93.
8
Characterizing spatially varying performance to improve multi-atlas multi-label segmentation.
Inf Process Med Imaging. 2011;22:85-96. doi: 10.1007/978-3-642-22092-0_8.
9
Nonlocal patch-based label fusion for hippocampus segmentation.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):129-36. doi: 10.1007/978-3-642-15711-0_17.
10
Encoding atlases by randomized classification forests for efficient multi-atlas label propagation.
Med Image Anal. 2014 Dec;18(8):1262-73. doi: 10.1016/j.media.2014.06.010. Epub 2014 Jul 2.

引用本文的文献

1
Dynamic multiatlas selection-based consensus segmentation of head and neck structures from CT images.
Med Phys. 2019 Dec;46(12):5612-5622. doi: 10.1002/mp.13854. Epub 2019 Oct 31.
2
Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age.
Neuroimage Clin. 2015 Aug 24;9:176-93. doi: 10.1016/j.nicl.2015.07.019. eCollection 2015.
3
Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.
IEEE J Biomed Health Inform. 2015 Sep;19(5):1598-609. doi: 10.1109/JBHI.2015.2439242.
4
Contour-Driven Atlas-Based Segmentation.
IEEE Trans Med Imaging. 2015 Dec;34(12):2492-505. doi: 10.1109/TMI.2015.2442753. Epub 2015 Jun 9.
5
Evaluation of Multi-Atlas Label Fusion for In Vivo MRI Orbital Segmentation.
J Med Imaging (Bellingham). 2014 Jul 18;1(2). doi: 10.1117/1.JMI.1.2.024002.
6
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
8
Multiatlas segmentation as nonparametric regression.
IEEE Trans Med Imaging. 2014 Sep;33(9):1803-17. doi: 10.1109/TMI.2014.2321281. Epub 2014 Apr 30.
10
How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size.
Med Image Comput Comput Assist Interv. 2012;7509:103-114. doi: 10.1007/978-3-642-33530-3_9.

本文引用的文献

1
Nonlocal patch-based label fusion for hippocampus segmentation.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):129-36. doi: 10.1007/978-3-642-15711-0_17.
2
A generative model for image segmentation based on label fusion.
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.
4
Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease.
Neuroimage. 2010 Jul 15;51(4):1345-59. doi: 10.1016/j.neuroimage.2010.03.018. Epub 2010 Mar 15.
6
Combination strategies in multi-atlas image segmentation: application to brain MR data.
IEEE Trans Med Imaging. 2009 Aug;28(8):1266-77. doi: 10.1109/TMI.2009.2014372. Epub 2009 Feb 18.
8
Unbiased diffeomorphic atlas construction for computational anatomy.
Neuroimage. 2004;23 Suppl 1:S151-60. doi: 10.1016/j.neuroimage.2004.07.068.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验