Suppr超能文献

植物适应温度胁迫过程中脂质途径的调节

Adjustments of lipid pathways in plant adaptation to temperature stress.

作者信息

Li Qiang, Shen Wenyun, Zheng Qian, Fowler D Brian, Zou Jitao

机构信息

a Department of Plant Science ; University of Saskatchewan ; Saskatoon , Saskatchewan , Canada.

b National Research Council Canada ; Saskatoon , Saskatchewan , Canada.

出版信息

Plant Signal Behav. 2016;11(1):e1058461. doi: 10.1080/15592324.2015.1058461.

Abstract

Modulation of membrane lipid composition under varying environmental conditions is an important part of plant stress adaptation. Most notably, proportional changes of lipid composition in response to temperature changes are a major cellular response to requirements of membrane fluidity adjustment. In higher plants, synthesis of glycerolipids is accomplished by 2 major pathways, the prokaryotic and eukaryotic pathway, located in the chloroplast and the endoplasmic reticulum (ER), respectively. Recently, we systematically investigated the re-adjustments of glycerolipid pathways under temperature stress at the metabolite and transcript levels using 3 plant species with distinct lipid profiles. The relative contributions of 2 pathways and lipid channeling from the ER and chloroplast were both observed in plants under temperature stress. Potential factors controlling the lipid flux were identified through transcriptome analysis.

摘要

在不同环境条件下调节膜脂组成是植物应激适应的重要组成部分。最值得注意的是,脂质组成随温度变化的比例变化是细胞对膜流动性调节需求的主要反应。在高等植物中,甘油olipids的合成分别通过位于叶绿体和内质网(ER)中的2条主要途径,即原核和真核途径来完成。最近,我们使用3种具有不同脂质谱的植物物种,在代谢物和转录水平上系统地研究了温度胁迫下甘油olipid途径的重新调节。在温度胁迫下的植物中,观察到了2条途径的相对贡献以及来自内质网和叶绿体的脂质通道。通过转录组分析确定了控制脂质通量的潜在因素。

相似文献

1
Adjustments of lipid pathways in plant adaptation to temperature stress.
Plant Signal Behav. 2016;11(1):e1058461. doi: 10.1080/15592324.2015.1058461.
2
Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants.
Plant Cell. 2015 Jan;27(1):86-103. doi: 10.1105/tpc.114.134338. Epub 2015 Jan 6.
3
Membrane glycerolipid equilibrium under endoplasmic reticulum stress in Arabidopsis thaliana.
Biochem Biophys Res Commun. 2018 Jun 2;500(2):103-109. doi: 10.1016/j.bbrc.2018.03.025. Epub 2018 Apr 3.
6
Alterations in the leaf lipidome of Brassica carinata under high-temperature stress.
BMC Plant Biol. 2021 Sep 6;21(1):404. doi: 10.1186/s12870-021-03189-x.
8
Lipid landscape remodelling in Sarcocornia fruticosa green and red physiotypes.
Plant Physiol Biochem. 2020 Dec;157:128-137. doi: 10.1016/j.plaphy.2020.10.005. Epub 2020 Oct 10.
10
Changes in the endoplasmic reticulum lipid properties in response to low temperature in Brassica napus.
Plant Physiol Biochem. 2004 Dec;42(10):811-22. doi: 10.1016/j.plaphy.2004.10.001.

引用本文的文献

1
Chromosome-level genomes of two Bracteacoccaceae highlight adaptations to biocrusts.
Nat Commun. 2025 Feb 10;16(1):1492. doi: 10.1038/s41467-025-56614-2.
2
Mechanism of Transcription Factor ChbZIP1 Enhanced Alkaline Stress Tolerance in .
Int J Mol Sci. 2025 Jan 17;26(2):769. doi: 10.3390/ijms26020769.
3
Research progress on the physiological response and molecular mechanism of cold response in plants.
Front Plant Sci. 2024 Jan 30;15:1334913. doi: 10.3389/fpls.2024.1334913. eCollection 2024.
5
Characterization of the preferred cation cofactors of chloroplast protein kinases in Arabidopsis thaliana.
FEBS Open Bio. 2023 Mar;13(3):511-518. doi: 10.1002/2211-5463.13563. Epub 2023 Jan 31.
10
Membrane Lipids' Metabolism and Transcriptional Regulation in Maize Roots Under Cold Stress.
Front Plant Sci. 2021 Apr 15;12:639132. doi: 10.3389/fpls.2021.639132. eCollection 2021.

本文引用的文献

1
The structural analysis of wheat flour glycerolipids.
Lipids. 1971 Oct;6(10):768-76. doi: 10.1007/BF02531305.
2
Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants.
Plant Cell. 2015 Jan;27(1):86-103. doi: 10.1105/tpc.114.134338. Epub 2015 Jan 6.
3
Linking gene expression and membrane lipid composition of Arabidopsis.
Plant Cell. 2014 Mar;26(3):915-28. doi: 10.1105/tpc.113.118919. Epub 2014 Mar 18.
5
In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density.
Plant Physiol. 2013 Jun;162(2):626-39. doi: 10.1104/pp.113.216820. Epub 2013 Apr 24.
6
ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in Arabidopsis.
Plant Cell. 2013 Apr;25(4):1430-44. doi: 10.1105/tpc.113.111179. Epub 2013 Apr 12.
8
Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis.
Plant J. 2012 Mar;69(5):769-81. doi: 10.1111/j.1365-313X.2011.04829.x. Epub 2011 Dec 1.
9
Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane.
Science. 2010 Oct 8;330(6001):226-8. doi: 10.1126/science.1191803. Epub 2010 Aug 26.
10
Metabolic and transcriptional responses of glycerolipid pathways to a perturbation of glycerol 3-phosphate metabolism in Arabidopsis.
J Biol Chem. 2010 Jul 23;285(30):22957-65. doi: 10.1074/jbc.M109.097758. Epub 2010 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验