Xu Yu, Wang Yuhong, Zhang Mei, Jiang Min, Rosenhouse-Dantsker Avia, Wassenaar Tsjerk, Tseng Gea-Ny
Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, Virginia.
Department of Medicine, Pulmonary Section, University of Illinois at Chicago, Illinois; Department of Chemistry, University of Illinois at Chicago, Illinois.
Biophys J. 2015 Jan 6;108(1):62-75. doi: 10.1016/j.bpj.2014.10.059.
The slow delayed rectifier (IKs) channel is composed of the KCNQ1 channel and KCNE1 auxiliary subunit, and functions to repolarize action potentials in the human heart. IKs activators may provide therapeutic efficacy for treating long QT syndromes. Here, we show that a new KCNQ1 activator, ML277, can enhance IKs amplitude in adult guinea pig and canine ventricular myocytes. We probe its binding site and mechanism of action by computational analysis based on our recently reported KCNQ1 and KCNQ1/KCNE1 3D models, followed by experimental validation. Results from a pocket analysis and docking exercise suggest that ML277 binds to a side pocket in KCNQ1 and the KCNE1-free side pocket of KCNQ1/KCNE1. Molecular-dynamics (MD) simulations based on the most favorable channel/ML277 docking configurations reveal a well-defined ML277 binding space surrounded by the S2-S3 loop and S4-S5 helix on the intracellular side, and by S4-S6 transmembrane helices on the lateral sides. A detailed analysis of MD trajectories suggests two mechanisms of ML277 action. First, ML277 restricts the conformational dynamics of the KCNQ1 pore, optimizing K(+) ion coordination in the selectivity filter and increasing current amplitudes. Second, ML277 binding induces global motions in the channel, including regions critical for KCNQ1 gating transitions. We conclude that ML277 activates IKs by binding to an intersubunit space and allosterically influencing pore conductance and gating transitions. KCNE1 association protects KCNQ1 from an arrhythmogenic (constitutive current-inducing) effect of ML277, but does not preclude its current-enhancing effect.
缓慢延迟整流钾通道(IKs)由KCNQ1通道和KCNE1辅助亚基组成,其功能是使人心肌动作电位复极化。IKs激活剂可能为治疗长QT综合征提供治疗效果。在此,我们表明一种新型KCNQ1激活剂ML277可增强成年豚鼠和犬心室肌细胞中的IKs幅度。我们基于我们最近报道的KCNQ1和KCNQ1/KCNE1三维模型,通过计算分析探究其结合位点和作用机制,随后进行实验验证。口袋分析和对接实验结果表明,ML277与KCNQ1中的一个侧口袋以及KCNQ1/KCNE1的不含KCNE1的侧口袋结合。基于最有利的通道/ML277对接构型的分子动力学(MD)模拟揭示了一个明确的ML277结合空间,其在内侧被S2-S3环和S4-S5螺旋包围,在侧面被S4-S6跨膜螺旋包围。对MD轨迹的详细分析表明了ML277作用的两种机制。首先,ML277限制KCNQ1孔的构象动力学,优化选择性过滤器中K(+)离子的配位并增加电流幅度。其次,ML277结合诱导通道中的全局运动,包括对KCNQ1门控转换至关重要的区域。我们得出结论,ML277通过结合亚基间空间并变构影响孔电导和门控转换来激活IKs。KCNE1的结合可保护KCNQ1免受ML277的致心律失常(诱导组成性电流)作用,但不排除其增强电流的作用。