Suppr超能文献

低代谢的调节:对表观遗传控制的见解

Regulation of hypometabolism: insights into epigenetic controls.

作者信息

Storey Kenneth B

机构信息

Institute of Biochemistry and Departments of Biology and Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada

出版信息

J Exp Biol. 2015 Jan 1;218(Pt 1):150-9. doi: 10.1242/jeb.106369.

Abstract

For many animals, survival of severe environmental stress (e.g. to extremes of heat or cold, drought, oxygen limitation, food deprivation) is aided by entry into a hypometabolic state. Strong depression of metabolic rate, often to only 1-20% of normal resting rate, is a core survival strategy of multiple forms of hypometabolism across the animal kingdom, including hibernation, anaerobiosis, aestivation and freeze tolerance. Global biochemical controls are needed to suppress and reprioritize energy use; one such well-studied control is reversible protein phosphorylation. Recently, we turned our attention to the idea that mechanisms previously associated mainly with epigenetic regulation can also contribute to reversible suppression of gene expression in hypometabolic states. Indeed, situations as diverse as mammalian hibernation and turtle anoxia tolerance show coordinated changes in histone post-translational modifications (acetylation, phosphorylation) and activities of histone deacetylases, consistent with their use as mechanisms for suppressing gene expression during hypometabolism. Other potential mechanisms of gene silencing in hypometabolic states include altered expression of miRNAs that can provide post-transcriptional suppression of mRNA translation and the formation of ribonuclear protein bodies in the nucleus and cytoplasm to allow storage of mRNA transcripts until animals rouse themselves again. Furthermore, mechanisms first identified in epigenetic regulation (e.g. protein acetylation) are now proving to apply to many central metabolic enzymes (e.g. lactate dehydrogenase), suggesting a new layer of regulatory control that can contribute to coordinating the depression of metabolic rate.

摘要

对许多动物来说,进入低代谢状态有助于在严重的环境压力(如极端高温或低温、干旱、氧气限制、食物匮乏)下生存。代谢率的强烈降低,通常降至正常静息率的1% - 20%,是动物界多种低代谢形式(包括冬眠、厌氧生活、夏眠和耐冻性)的核心生存策略。需要全局生化控制来抑制能量使用并重新分配优先级;一种经过充分研究的控制方式是可逆蛋白磷酸化。最近,我们将注意力转向这样一种观点,即以前主要与表观遗传调控相关的机制也可能有助于在低代谢状态下可逆地抑制基因表达。事实上,从哺乳动物冬眠到乌龟耐缺氧等各种情况都显示出组蛋白翻译后修饰(乙酰化、磷酸化)和组蛋白去乙酰化酶活性的协调变化,这与它们在低代谢期间作为抑制基因表达的机制的作用一致。低代谢状态下基因沉默的其他潜在机制包括微小RNA表达的改变,其可提供对mRNA翻译的转录后抑制,以及在细胞核和细胞质中形成核糖核蛋白体,以便储存mRNA转录本,直到动物再次苏醒。此外,最初在表观遗传调控中发现的机制(如蛋白质乙酰化)现在已证明适用于许多核心代谢酶(如乳酸脱氢酶),这表明存在一层新的调控控制,有助于协调代谢率的降低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验