Suppr超能文献

芽殖酵母多染色体结构的计算预测

Computational predictions of structures of multichromosomes of budding yeast.

作者信息

Gürsoy Gamze, Xu Yun, Liang Jie

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3945-8. doi: 10.1109/EMBC.2014.6944487.

Abstract

Knowledge of the global architecture of the cell nucleus and the spatial organization of genome is critical for understanding gene expression and nuclear function. Single-cell imaging techniques provide a wealth of information on the spatial organization of chromosomes. Computational tools for modelling chromosome structure have broad implications in studying the effect of cell nucleus on higher-order genome organization. Here we describe a multichromosome constrained self-avoiding chromatin model for studying ensembles of genome structural models of budding yeast nucleus. We successfully generated a large number of model genomes of yeast with appropriate chromatin fiber diameter, persistence length, and excluded volume under spatial confinement. By incorporating details of the constraints from single-cell imaging studies, our method can model the budding yeast genome realistically. The model developed here provides a general computational framework for studying the overall architecture of budding yeast genome.

摘要

了解细胞核的整体结构和基因组的空间组织对于理解基因表达和核功能至关重要。单细胞成像技术提供了关于染色体空间组织的丰富信息。用于模拟染色体结构的计算工具在研究细胞核对高阶基因组组织的影响方面具有广泛的意义。在这里,我们描述了一种多染色体约束的自回避染色质模型,用于研究芽殖酵母细胞核基因组结构模型的集合。我们成功地在空间限制下生成了大量具有适当染色质纤维直径、持久长度和排除体积的酵母模型基因组。通过纳入单细胞成像研究中的约束细节,我们的方法可以逼真地模拟芽殖酵母基因组。这里开发的模型为研究芽殖酵母基因组的整体结构提供了一个通用的计算框架。

相似文献

1
Computational predictions of structures of multichromosomes of budding yeast.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3945-8. doi: 10.1109/EMBC.2014.6944487.
3
Measuring Chromatin Structure in Budding Yeast.
Cold Spring Harb Protoc. 2015 Jul 1;2015(7):614-8. doi: 10.1101/pdb.top077552.
4
Spatial confinement is a major determinant of the folding landscape of human chromosomes.
Nucleic Acids Res. 2014 Jul;42(13):8223-30. doi: 10.1093/nar/gku462. Epub 2014 Jul 2.
5
Form and function of topologically associating genomic domains in budding yeast.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3061-E3070. doi: 10.1073/pnas.1612256114. Epub 2017 Mar 27.
6
Comparative 3D genome structure analysis of the fission and the budding yeast.
PLoS One. 2015 Mar 23;10(3):e0119672. doi: 10.1371/journal.pone.0119672. eCollection 2015.
7
The Rabl configuration limits topological entanglement of chromosomes in budding yeast.
Sci Rep. 2019 May 1;9(1):6795. doi: 10.1038/s41598-019-42967-4.
8
Dynamical modeling of three-dimensional genome organization in interphase budding yeast.
Biophys J. 2012 Jan 18;102(2):296-304. doi: 10.1016/j.bpj.2011.12.005.
9
Hi-C in Budding Yeast.
Cold Spring Harb Protoc. 2015 Jul 1;2015(7):649-61. doi: 10.1101/pdb.prot085209.
10
Principles of chromosomal organization: lessons from yeast.
J Cell Biol. 2011 Mar 7;192(5):723-33. doi: 10.1083/jcb.201010058.

引用本文的文献

本文引用的文献

1
Spatial confinement is a major determinant of the folding landscape of human chromosomes.
Nucleic Acids Res. 2014 Jul;42(13):8223-30. doi: 10.1093/nar/gku462. Epub 2014 Jul 2.
2
Complexity of chromatin folding is captured by the strings and binders switch model.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16173-8. doi: 10.1073/pnas.1204799109. Epub 2012 Sep 17.
3
Physical tethering and volume exclusion determine higher-order genome organization in budding yeast.
Genome Res. 2012 Jul;22(7):1295-305. doi: 10.1101/gr.129437.111. Epub 2012 May 22.
4
The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules.
Nat Struct Mol Biol. 2011 Jan;18(1):107-14. doi: 10.1038/nsmb.1936. Epub 2010 Dec 5.
5
Visualizing yeast chromosomes and nuclear architecture.
Methods Enzymol. 2010;470:535-67. doi: 10.1016/S0076-6879(10)70021-5. Epub 2010 Mar 1.
6
The budding yeast nucleus.
Cold Spring Harb Perspect Biol. 2010 Aug;2(8):a000612. doi: 10.1101/cshperspect.a000612. Epub 2010 Jun 16.
7
A three-dimensional model of the yeast genome.
Nature. 2010 May 20;465(7296):363-7. doi: 10.1038/nature08973. Epub 2010 May 2.
8
The nuclear envelope in genome organization, expression and stability.
Nat Rev Mol Cell Biol. 2010 May;11(5):317-28. doi: 10.1038/nrm2894.
9
Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2025-30. doi: 10.1073/pnas.0914187107. Epub 2010 Jan 13.
10
The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion.
Genome Res. 2009 Apr;19(4):611-25. doi: 10.1101/gr.083881.108. Epub 2009 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验