Suppr超能文献

用于研究基因组三维结构的分析方法。

Analysis methods for studying the 3D architecture of the genome.

作者信息

Ay Ferhat, Noble William S

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.

Feinberg School of Medicine, Northwestern University, Chicago, 60661, IL, USA.

出版信息

Genome Biol. 2015 Sep 2;16:183. doi: 10.1186/s13059-015-0745-7.

Abstract

The rapidly increasing quantity of genome-wide chromosome conformation capture data presents great opportunities and challenges in the computational modeling and interpretation of the three-dimensional genome. In particular, with recent trends towards higher-resolution high-throughput chromosome conformation capture (Hi-C) data, the diversity and complexity of biological hypotheses that can be tested necessitates rigorous computational and statistical methods as well as scalable pipelines to interpret these datasets. Here we review computational tools to interpret Hi-C data, including pipelines for mapping, filtering, and normalization, and methods for confidence estimation, domain calling, visualization, and three-dimensional modeling.

摘要

全基因组染色体构象捕获数据量的迅速增加,在三维基因组的计算建模和解释方面带来了巨大的机遇和挑战。特别是,随着近期出现的更高分辨率高通量染色体构象捕获(Hi-C)数据的趋势,可测试的生物学假设的多样性和复杂性使得需要严格的计算和统计方法以及可扩展的流程来解释这些数据集。在这里,我们回顾了用于解释Hi-C数据的计算工具,包括用于映射、过滤和归一化的流程,以及用于置信度估计、结构域识别、可视化和三维建模的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4046/4556012/a87d4ec0fc6e/13059_2015_745_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验