Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
J Neurosci Methods. 2018 Jan 1;293:151-161. doi: 10.1016/j.jneumeth.2017.09.013. Epub 2017 Sep 22.
Resting wakefulness is not a unitary state, with evidence accumulating that spontaneous reorganization of brain activity can be assayed through functional magnetic resonance imaging (fMRI). The dynamics of correlated fMRI signals among functionally-related brain regions, termed dynamic functional connectivity (dFC), may represent nonstationarity arising from underlying neural processes. However, given the dimensionality and noise inherent in such recordings, seeming fluctuations in dFC could be due to sampling variability or artifacts.
Here, we highlight key methodological considerations when evaluating dFC in resting-state fMRI data.
In particular, we demonstrate how dimensionality reduction of fMRI data, a common practice often involving principal component analysis, may give rise to spurious dFC phenomenology due to its effect of decorrelating the underlying time-series.
We formalize a dFC assessment that avoids dimensionality reduction and use it to show the existence of at least two FC states in the resting-state.
静息觉醒并非单一状态,有证据表明,通过功能磁共振成像(fMRI)可以检测到大脑活动的自发重组。在功能相关的脑区之间,相关的 fMRI 信号的动力学,称为动态功能连接(dFC),可能代表潜在神经过程产生的非平稳性。然而,鉴于这些记录固有的维度和噪声,dFC 中的看似波动可能是由于采样变异性或伪影引起的。
在这里,我们强调了评估静息状态 fMRI 数据中 dFC 时的关键方法学考虑因素。
特别是,我们展示了 fMRI 数据的降维,这是一种常见的做法,通常涉及主成分分析,由于其对潜在时间序列去相关的作用,可能会导致虚假的 dFC 现象。
我们形式化了一种避免降维的 dFC 评估,并使用它来表明在静息状态下至少存在两种 FC 状态。