Willenborg Jörg, Huber Claudia, Koczula Anna, Lange Birgit, Eisenreich Wolfgang, Valentin-Weigand Peter, Goethe Ralph
From the Institute of Microbiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany and
the Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany.
J Biol Chem. 2015 Feb 27;290(9):5840-54. doi: 10.1074/jbc.M114.619163. Epub 2015 Jan 9.
Streptococcus suis is a neglected zoonotic pathogen that has to adapt to the nutritional requirements in the different host niches encountered during infection and establishment of invasive diseases. To dissect the central metabolic activity of S. suis under different conditions of nutrient availability, we performed labeling experiments starting from [(13)C]glucose specimens and analyzed the resulting isotopologue patterns in amino acids of S. suis grown under in vitro and ex vivo conditions. In combination with classical growth experiments, we found that S. suis is auxotrophic for Arg, Gln/Glu, His, Leu, and Trp in chemically defined medium. De novo biosynthesis was shown for Ala, Asp, Ser, and Thr at high rates and for Gly, Lys, Phe, Tyr, and Val at moderate or low rates, respectively. Glucose degradation occurred mainly by glycolysis and to a minor extent by the pentose phosphate pathway. Furthermore, the exclusive formation of oxaloacetate by phosphoenolpyruvate (PEP) carboxylation became evident from the patterns in de novo synthesized amino acids. Labeling experiments with S. suis grown ex vivo in blood or cerebrospinal fluid reflected the metabolic adaptation to these host niches with different nutrient availability; however, similar key metabolic activities were identified under these conditions. This points at the robustness of the core metabolic pathways in S. suis during the infection process. The crucial role of PEP carboxylation for growth of S. suis in the host was supported by experiments with a PEP carboxylase-deficient mutant strain in blood and cerebrospinal fluid.
猪链球菌是一种被忽视的人畜共患病原体,在感染和侵袭性疾病发生过程中,它必须适应所遇到的不同宿主生态位的营养需求。为了剖析猪链球菌在不同营养可利用条件下的核心代谢活性,我们从[(13)C]葡萄糖标本开始进行标记实验,并分析了在体外和体内条件下生长的猪链球菌氨基酸中产生的同位素异构体模式。结合经典生长实验,我们发现猪链球菌在化学成分确定的培养基中对精氨酸、谷氨酰胺/谷氨酸、组氨酸、亮氨酸和色氨酸是营养缺陷型的。从头生物合成在丙氨酸、天冬氨酸、丝氨酸和苏氨酸中显示出高发生率,而在甘氨酸、赖氨酸、苯丙氨酸、酪氨酸和缬氨酸中分别显示出中等或低发生率。葡萄糖降解主要通过糖酵解进行,在较小程度上通过磷酸戊糖途径进行。此外,从从头合成氨基酸的模式中可以明显看出,磷酸烯醇丙酮酸(PEP)羧化作用独家形成草酰乙酸。在血液或脑脊液中进行体内生长的猪链球菌标记实验反映了对这些具有不同营养可利用性的宿主生态位的代谢适应;然而,在这些条件下确定了类似的关键代谢活性。这表明猪链球菌在感染过程中核心代谢途径的稳健性。在血液和脑脊液中对缺乏PEP羧化酶的突变菌株进行的实验支持了PEP羧化作用对猪链球菌在宿主体内生长的关键作用。