Suppr超能文献

脑皮层电图运动想象脑机接口中学习的神经关联

Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface.

作者信息

Blakely Tim M, Olson Jared D, Miller Kai J, Rao Rajesh P N, Ojemann Jeffrey G

机构信息

Department of Bioengineering, University of Washington, Seattle WA, 2419 8th Ave N Apt 402, Seattle, WA 98109. This author's research studies the underlying cortical organization of human sensorimotor function, specializing in multi-day micro-electrocorticographic array recordings in human subjects. This type of research is applicable in many areas of cognitive neuroscience, from brain-computer interfacing to neural engineering and robotics.

Department of Rehabilitation Medicine, University of Washington, Seattle, WA. Center for Sensorimotor Neural Engineering, Seattle, WA, Box 359740, 325 9 Avenue, Seattle, WA 98104, 206-744-5862, The author researches human sensorimotor neurophysiology, clinical translation of brain-machine interfaces, and is a physiatrist (physical medicine and rehabilitation physician) specializing in neurorehabilitation.

出版信息

Brain Comput Interfaces (Abingdon). 2014 Jul 1;1(3-4):147-157. doi: 10.1080/2326263X.2014.954183.

Abstract

Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75-200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms.

摘要

人类受试者可以通过调节初级运动皮层(M1)的高伽马活动(75-200赫兹范围内的信号功率)来学习控制一维皮层脑电图(ECoG)脑机接口(BCI)。然而,在新的BCI技能习得过程中信号的稳定性和动态变化尚未得到研究。在本研究中,我们报告了BCI训练期间高伽马控制信号演变的3个特征阶段:初始阶段,任务准确性低,伽马频谱中的功率调制相应较低;随后是第二个阶段,任务准确性提高,活动与休息之间的平均功率分离增加;最后一个阶段,任务准确性高,功率分离稳定(或降低),试验间方差减小。这些发现可能对BCI控制算法的设计和实施具有启示意义。

相似文献

3
Distributed cortical adaptation during learning of a brain-computer interface task.分布式皮层适应在脑机接口任务学习中的作用。
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10818-23. doi: 10.1073/pnas.1221127110. Epub 2013 Jun 10.
6
Neural mechanisms of brain-computer interface control.脑机接口控制的神经机制。
Neuroimage. 2011 Apr 15;55(4):1779-90. doi: 10.1016/j.neuroimage.2011.01.021. Epub 2011 Jan 20.
7
Concurrent control of a brain-computer interface and natural overt movements.脑机接口与自然运动的并发控制。
J Neural Eng. 2018 Dec;15(6):066021. doi: 10.1088/1741-2552/aadf3d. Epub 2018 Oct 10.

引用本文的文献

本文引用的文献

2
Brain-computer interfaces: a powerful tool for scientific inquiry.脑机接口:科学探究的有力工具。
Curr Opin Neurobiol. 2014 Apr;25:70-5. doi: 10.1016/j.conb.2013.11.013. Epub 2013 Dec 27.
3
Functional mapping of sequence learning in normal humans.正常人类序列学习的功能映射。
J Cogn Neurosci. 1995 Fall;7(4):497-510. doi: 10.1162/jocn.1995.7.4.497.
4
Distributed cortical adaptation during learning of a brain-computer interface task.分布式皮层适应在脑机接口任务学习中的作用。
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10818-23. doi: 10.1073/pnas.1221127110. Epub 2013 Jun 10.
10
Power-law scaling in the brain surface electric potential.大脑表面电势的幂律标度。
PLoS Comput Biol. 2009 Dec;5(12):e1000609. doi: 10.1371/journal.pcbi.1000609. Epub 2009 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验