Suppr超能文献

利用脑电言语网络控制人类脑机接口

Using the electrocorticographic speech network to control a brain-computer interface in humans.

机构信息

Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 8057, 660 South Euclid, St Louis, MO 63130, USA.

出版信息

J Neural Eng. 2011 Jun;8(3):036004. doi: 10.1088/1741-2560/8/3/036004. Epub 2011 Apr 7.

Abstract

Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68% and 91% within 15 min. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive.

摘要

脑电描记术(ECoG)已成为脑机接口(BCI)系统的一种新信号平台。经典地,在人类中用于设备控制的被广泛研究和利用的皮质生理学一直是来自感觉运动皮层的脑信号。因此,尚不清楚其他神经生理学底物(例如言语网络)是否可用于进一步改进或补充现有的基于运动的控制范式。我们在此首次证明,与不同的显性和想象的语音发音相关的 ECoG 信号可使接受侵入性监测的人类患者能够快速而准确地控制一维计算机光标。在较高的伽马频带振荡内可以区分这种语音内容,并使用户能够在 15 分钟内实现 68%至 91%的最终目标精度。此外,一名患者使用由 1 毫米间隔微丝组成的微阵列的记录实现了稳健的控制。这些发现表明,与言语相关的皮质网络可为 BCI 操作提供额外的认知和生理底物,并且可以从小且微创的皮质阵列中获取这些信号。

相似文献

1
Using the electrocorticographic speech network to control a brain-computer interface in humans.
J Neural Eng. 2011 Jun;8(3):036004. doi: 10.1088/1741-2560/8/3/036004. Epub 2011 Apr 7.
4
A brain-computer interface using electrocorticographic signals in humans.
J Neural Eng. 2004 Jun;1(2):63-71. doi: 10.1088/1741-2560/1/2/001. Epub 2004 Jun 14.
5
6
Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.
J Neural Eng. 2011 Apr;8(2):025020. doi: 10.1088/1741-2560/8/2/025020. Epub 2011 Mar 24.
7
Fast attainment of computer cursor control with noninvasively acquired brain signals.
J Neural Eng. 2011 Jun;8(3):036010. doi: 10.1088/1741-2560/8/3/036010. Epub 2011 Apr 15.
8
ECoG factors underlying multimodal control of a brain-computer interface.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):246-50. doi: 10.1109/TNSRE.2006.875570.
9
Electrocorticography-based brain computer interface--the Seattle experience.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):194-8. doi: 10.1109/TNSRE.2006.875536.

引用本文的文献

1
A Comprehensive Survey of Brain-Computer Interface Technology in Health care: Research Perspectives.
J Med Signals Sens. 2025 Jun 9;15:16. doi: 10.4103/jmss.jmss_49_24. eCollection 2025.
2
Invasive Brain-Computer Interface for Communication: A Scoping Review.
Brain Sci. 2025 Mar 24;15(4):336. doi: 10.3390/brainsci15040336.
4
Decoding speech intent from non-frontal cortical areas.
J Neural Eng. 2025 Feb 13;22(1):016024. doi: 10.1088/1741-2552/adaa20.
5
Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models.
J Neural Eng. 2023 Sep 20;20(5):056010. doi: 10.1088/1741-2552/ace8be.
6
Neural decoding of music from the EEG.
Sci Rep. 2023 Jan 12;13(1):624. doi: 10.1038/s41598-022-27361-x.
7
[Key technology of brain-computer interaction based on speech imagery].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Jun 25;39(3):596-611. doi: 10.7507/1001-5515.202107018.
8
Spatial-temporal aspects of continuous EEG-based neurorobotic control.
J Neural Eng. 2020 Nov 11;17(6). doi: 10.1088/1741-2552/abc0b4.
9
Prefrontal High Gamma in ECoG Tags Periodicity of Musical Rhythms in Perception and Imagination.
eNeuro. 2020 Jul 31;7(4). doi: 10.1523/ENEURO.0413-19.2020. Print 2020 Jul/Aug.
10
Decoding Imagined and Spoken Phrases From Non-invasive Neural (MEG) Signals.
Front Neurosci. 2020 Apr 7;14:290. doi: 10.3389/fnins.2020.00290. eCollection 2020.

本文引用的文献

1
Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition.
Neuroimage. 2011 Feb 14;54(4):2960-72. doi: 10.1016/j.neuroimage.2010.10.029. Epub 2010 Oct 26.
2
Decoding spoken words using local field potentials recorded from the cortical surface.
J Neural Eng. 2010 Oct;7(5):056007. doi: 10.1088/1741-2560/7/5/056007. Epub 2010 Sep 1.
3
Brain-computer interfacing based on cognitive control.
Ann Neurol. 2010 Jun;67(6):809-16. doi: 10.1002/ana.21985.
4
Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys.
Front Neuroeng. 2010 Mar 30;3:3. doi: 10.3389/fneng.2010.00003. eCollection 2010.
5
Optimal spacing of surface electrode arrays for brain-machine interface applications.
J Neural Eng. 2010 Apr;7(2):26004. doi: 10.1088/1741-2560/7/2/026004. Epub 2010 Mar 2.
6
Cortical activity during motor execution, motor imagery, and imagery-based online feedback.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4430-5. doi: 10.1073/pnas.0913697107. Epub 2010 Feb 16.
7
Electrocorticographic frequency alteration mapping for extraoperative localization of speech cortex.
Neurosurgery. 2010 Feb;66(2):E407-9. doi: 10.1227/01.NEU.0000345352.13696.6F.
8
Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:586-9. doi: 10.1109/IEMBS.2009.5333704.
9
Evolution of brain-computer interfaces: going beyond classic motor physiology.
Neurosurg Focus. 2009 Jul;27(1):E4. doi: 10.3171/2009.4.FOCUS0979.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验