Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 8057, 660 South Euclid, St Louis, MO 63130, USA.
J Neural Eng. 2011 Jun;8(3):036004. doi: 10.1088/1741-2560/8/3/036004. Epub 2011 Apr 7.
Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68% and 91% within 15 min. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive.
脑电描记术(ECoG)已成为脑机接口(BCI)系统的一种新信号平台。经典地,在人类中用于设备控制的被广泛研究和利用的皮质生理学一直是来自感觉运动皮层的脑信号。因此,尚不清楚其他神经生理学底物(例如言语网络)是否可用于进一步改进或补充现有的基于运动的控制范式。我们在此首次证明,与不同的显性和想象的语音发音相关的 ECoG 信号可使接受侵入性监测的人类患者能够快速而准确地控制一维计算机光标。在较高的伽马频带振荡内可以区分这种语音内容,并使用户能够在 15 分钟内实现 68%至 91%的最终目标精度。此外,一名患者使用由 1 毫米间隔微丝组成的微阵列的记录实现了稳健的控制。这些发现表明,与言语相关的皮质网络可为 BCI 操作提供额外的认知和生理底物,并且可以从小且微创的皮质阵列中获取这些信号。