Suppr超能文献

基于SCFTIR1/AFB的生长素感知:植物生长发育中的机制与作用

SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development.

作者信息

Salehin Mohammad, Bagchi Rammyani, Estelle Mark

机构信息

Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093.

Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093

出版信息

Plant Cell. 2015 Jan;27(1):9-19. doi: 10.1105/tpc.114.133744. Epub 2015 Jan 20.

Abstract

Auxin regulates a vast array of growth and developmental processes throughout the life cycle of plants. Auxin responses are highly context dependent and can involve changes in cell division, cell expansion, and cell fate. The complexity of the auxin response is illustrated by the recent finding that the auxin-responsive gene set differs significantly between different cell types in the root. Auxin regulation of transcription involves a core pathway consisting of the TIR1/AFB F-box proteins, the Aux/IAA transcriptional repressors, and the ARF transcription factors. Auxin is perceived by a transient coreceptor complex consisting of a TIR1/AFB protein and an Aux/IAA protein. Auxin binding to the coreceptor results in degradation of the Aux/IAAs and derepression of ARF-based transcription. Although the basic outlines of this pathway are now well established, it remains unclear how specificity of the pathway is conferred. However, recent results, focusing on the ways that these three families of proteins interact, are starting to provide important clues.

摘要

生长素在植物的整个生命周期中调节大量的生长和发育过程。生长素反应高度依赖于环境,可能涉及细胞分裂、细胞扩张和细胞命运的变化。最近的研究发现,根中不同细胞类型之间的生长素反应基因集存在显著差异,这说明了生长素反应的复杂性。生长素对转录的调节涉及一个核心途径,该途径由TIR1/AFB F-box蛋白、Aux/IAA转录抑制因子和ARF转录因子组成。生长素由一个由TIR1/AFB蛋白和一个Aux/IAA蛋白组成的瞬时共受体复合物感知。生长素与共受体结合导致Aux/IAAs的降解和基于ARF的转录的去抑制。尽管这条途径的基本轮廓现在已经很清楚,但仍不清楚该途径的特异性是如何赋予的。然而,最近专注于这三类蛋白质相互作用方式的研究结果开始提供重要线索。

相似文献

1
SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development.
Plant Cell. 2015 Jan;27(1):9-19. doi: 10.1105/tpc.114.133744. Epub 2015 Jan 20.
2
Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.
Plant Cell Physiol. 2014 Aug;55(8):1450-9. doi: 10.1093/pcp/pcu077. Epub 2014 May 31.
3
Auxin signaling.
Curr Opin Plant Biol. 2006 Oct;9(5):448-53. doi: 10.1016/j.pbi.2006.07.006. Epub 2006 Jul 28.
4
Auxin receptors and plant development: a new signaling paradigm.
Annu Rev Cell Dev Biol. 2008;24:55-80. doi: 10.1146/annurev.cellbio.23.090506.123214.
5
Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6463-6472. doi: 10.1073/pnas.1809037116. Epub 2019 Mar 8.
8
Oligomerization of SCFTIR1 Is Essential for Aux/IAA Degradation and Auxin Signaling in Arabidopsis.
PLoS Genet. 2016 Sep 12;12(9):e1006301. doi: 10.1371/journal.pgen.1006301. eCollection 2016 Sep.
9
Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis.
Development. 2010 Jan;137(1):63-71. doi: 10.1242/dev.035840.
10
Plant development is regulated by a family of auxin receptor F box proteins.
Dev Cell. 2005 Jul;9(1):109-19. doi: 10.1016/j.devcel.2005.05.014.

引用本文的文献

2
Transcriptome and Endogenous Hormones Reveal the Regulatory Mechanism of Flower Development in .
Plants (Basel). 2025 Jul 25;14(15):2291. doi: 10.3390/plants14152291.
3
Allies or Enemies? The Power of Plant Hormones in Animals: Insights into Their Regulatory Roles.
Molecules. 2025 Jul 16;30(14):2984. doi: 10.3390/molecules30142984.
4
Aux/IAAs: specificity and redundancy.
Plant Signal Behav. 2025 Dec;20(1):2530541. doi: 10.1080/15592324.2025.2530541. Epub 2025 Jul 10.
5
Historical and mechanistic perspective on ABP1-TMK1-mediated cell surface auxin signaling.
NPJ Sci Plants. 2025;1(1):2. doi: 10.1038/s44383-025-00002-8. Epub 2025 Jul 1.
7
"Shape of Cell"-An Auxin and Cell Wall Duet.
Physiol Plant. 2025 May-Jun;177(3):e70294. doi: 10.1111/ppl.70294.
8
Genome-Wide Identification of / Negatively Regulate Root Growth in Soybean.
Int J Mol Sci. 2025 May 9;26(10):4547. doi: 10.3390/ijms26104547.

本文引用的文献

1
PIN-dependent auxin transport: action, regulation, and evolution.
Plant Cell. 2015 Jan;27(1):20-32. doi: 10.1105/tpc.114.134874. Epub 2015 Jan 20.
6
The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion.
Plant Cell Physiol. 2014 Nov;55(11):1969-76. doi: 10.1093/pcp/pcu124. Epub 2014 Sep 16.
7
Rapid Depletion of Budding Yeast Proteins via the Fusion of an Auxin-Inducible Degron (AID).
Curr Protoc Cell Biol. 2014 Sep 2;64:20.9.1-16. doi: 10.1002/0471143030.cb2009s64.
8
PLETHORA gradient formation mechanism separates auxin responses.
Nature. 2014 Nov 6;515(7525):125-129. doi: 10.1038/nature13663. Epub 2014 Aug 24.
9
Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway.
Curr Opin Plant Biol. 2014 Oct;21:51-58. doi: 10.1016/j.pbi.2014.06.006. Epub 2014 Jul 15.
10
Recapitulation of the forward nuclear auxin response pathway in yeast.
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9407-12. doi: 10.1073/pnas.1324147111. Epub 2014 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验