Suppr超能文献

皮质脊髓束的发育和脊髓神经支配在颈椎和腰椎靶标之间存在差异。

Corticospinal tract development and spinal cord innervation differ between cervical and lumbar targets.

机构信息

Department of Physiology, Teikyo University School of Medicine, Tokyo 173-8605, Japan, and.

Division of Genetic Therapeutics, Jichi Medical University, Tochigi 329-0498, Japan.

出版信息

J Neurosci. 2015 Jan 21;35(3):1181-91. doi: 10.1523/JNEUROSCI.2842-13.2015.

Abstract

The corticospinal (CS) tract is essential for voluntary movement, but what we know about the organization and development of the CS tract remains limited. To determine the total cortical area innervating the seventh cervical spinal cord segment (C7), which controls forelimb movement, we injected a retrograde tracer (fluorescent microspheres) into C7 such that it would spread widely within the unilateral gray matter (to >80%), but not to the CS tract. Subsequent detection of the tracer showed that, in both juvenile and adult mice, neurons distributed over an unexpectedly broad portion of the rostral two-thirds of the cerebral cortex converge to C7. This even included cortical areas controlling the hindlimbs (the fourth lumbar segment, L4). With aging, cell densities greatly declined, mainly due to axon branch elimination. Whole-cell recordings from spinal cord cells upon selective optogenetic stimulation of CS axons, and labeling of axons (DsRed) and presynaptic structures (synaptophysin) through cotransfection using exo utero electroporation, showed that overgrowing CS axons make synaptic connections with spinal cells in juveniles. This suggests that neuronal circuits involved in the CS tract to C7 are largely reorganized during development. By contrast, the cortical areas innervating L4 are limited to the conventional hindlimb area, and the cell distribution and density do not change during development. These findings call for an update of the traditional notion of somatotopic CS projection and imply that there are substantial developmental differences in the cortical control of forelimb and hindlimb movements, at least in rodents.

摘要

皮质脊髓束(CS)对于随意运动至关重要,但我们对 CS 束的组织和发育的了解仍然有限。为了确定控制前肢运动的第七颈椎脊髓段(C7)所支配的皮质总面积,我们将逆行示踪剂(荧光微球)注射到 C7 中,使其在单侧灰质中广泛扩散(>80%),但不扩散到 CS 束。随后对示踪剂的检测表明,在幼年和成年小鼠中,分布在大脑皮质前 2/3 区域内的出乎意料广泛的神经元汇聚到 C7。这甚至包括控制后腿(第四腰椎段,L4)的皮质区域。随着年龄的增长,细胞密度大大下降,主要是由于轴突分支消除。通过选择性光遗传学刺激 CS 轴突进行脊髓细胞的全细胞记录,并通过体外电穿孔共转染标记轴突(DsRed)和突触前结构(突触素),显示过度生长的 CS 轴突与幼年时的脊髓细胞形成突触连接。这表明参与 CS 束到 C7 的神经元回路在发育过程中得到了很大的重组。相比之下,支配 L4 的皮质区域仅限于传统的后腿区域,并且在发育过程中细胞分布和密度不会改变。这些发现呼吁更新传统的 CS 投射体感觉定位概念,并暗示在前肢和后肢运动的皮质控制中存在实质性的发育差异,至少在啮齿动物中是这样。

相似文献

1
Corticospinal tract development and spinal cord innervation differ between cervical and lumbar targets.
J Neurosci. 2015 Jan 21;35(3):1181-91. doi: 10.1523/JNEUROSCI.2842-13.2015.
6
Topographic specificity of corticospinal connections formed in explant coculture.
Development. 1994 Jul;120(7):1937-47. doi: 10.1242/dev.120.7.1937.
7
Tropism and corticospinal target selection in the rat.
Neuroscience. 1994 Mar;59(1):33-41. doi: 10.1016/0306-4522(94)90096-5.
8
9
Semaphorin-Mediated Corticospinal Axon Elimination Depends on the Activity-Induced Bax/Bak-Caspase Pathway.
J Neurosci. 2020 Jul 8;40(28):5402-5412. doi: 10.1523/JNEUROSCI.3190-18.2020. Epub 2020 May 29.
10
Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord.
J Comp Neurol. 1990 Dec 15;302(3):461-72. doi: 10.1002/cne.903020304.

引用本文的文献

2
Effects of Clenching Strength on Step Reaction Time.
J Funct Morphol Kinesiol. 2025 Jul 13;10(3):264. doi: 10.3390/jfmk10030264.
3
Corticospinal Tract Development, Evolution, and Skilled Movements.
Mov Disord. 2025 Jul;40(7):1221-1232. doi: 10.1002/mds.30199. Epub 2025 Apr 25.
4
The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents.
Front Neural Circuits. 2025 Mar 21;19:1566562. doi: 10.3389/fncir.2025.1566562. eCollection 2025.
6
Molecular programs guiding arealization of descending cortical pathways.
Nature. 2024 Oct;634(8034):644-651. doi: 10.1038/s41586-024-07895-y. Epub 2024 Sep 11.
7
Topographical and cell type-specific connectivity of rostral and caudal forelimb corticospinal neuron populations.
Cell Rep. 2024 Apr 23;43(4):113993. doi: 10.1016/j.celrep.2024.113993. Epub 2024 Mar 27.
8
9
Hindlimb muscle representations in mouse motor cortex defined by viral tracing.
Front Neuroanat. 2023 May 25;17:965318. doi: 10.3389/fnana.2023.965318. eCollection 2023.
10
A neural tract tracing study on synaptic connections for cortical glutamatergic terminals and cervical spinal calretinin neurons in rats.
Front Neural Circuits. 2023 Apr 28;17:1086873. doi: 10.3389/fncir.2023.1086873. eCollection 2023.

本文引用的文献

1
The GABA excitatory/inhibitory shift in brain maturation and neurological disorders.
Neuroscientist. 2012 Oct;18(5):467-86. doi: 10.1177/1073858412438697. Epub 2012 Apr 30.
3
Specific involvement of postsynaptic GluN2B-containing NMDA receptors in the developmental elimination of corticospinal synapses.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15252-7. doi: 10.1073/pnas.0906551107. Epub 2010 Aug 9.
4
Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex.
Nat Neurosci. 2010 Jun;13(6):739-44. doi: 10.1038/nn.2538. Epub 2010 May 2.
5
Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.
Nat Protoc. 2010 Mar;5(3):439-56. doi: 10.1038/nprot.2009.226. Epub 2010 Feb 18.
7
Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex.
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):8136-41. doi: 10.1073/pnas.0803849105. Epub 2008 Jun 3.
8
The determination of projection neuron identity in the developing cerebral cortex.
Curr Opin Neurobiol. 2008 Feb;18(1):28-35. doi: 10.1016/j.conb.2008.05.006. Epub 2008 May 26.
9
Optical and electrophysiological recordings of corticospinal synaptic activity and its developmental change in in vitro rat slice co-cultures.
Neuroscience. 2007 Dec 19;150(4):829-40. doi: 10.1016/j.neuroscience.2007.10.010. Epub 2007 Oct 22.
10
In vivo electroporation in the embryonic mouse central nervous system.
Nat Protoc. 2006;1(3):1552-8. doi: 10.1038/nprot.2006.276.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验