Maheshwari Shamoni, Tan Ek Han, West Allan, Franklin F Chris H, Comai Luca, Chan Simon W L
Department of Plant Biology and Genome Center, University of California, Davis, Davis, California, United States of America.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
PLoS Genet. 2015 Jan 26;11(1):e1004970. doi: 10.1371/journal.pgen.1004970. eCollection 2015 Jan.
The point of attachment of spindle microtubules to metaphase chromosomes is known as the centromere. Plant and animal centromeres are epigenetically specified by a centromere-specific variant of Histone H3, CENH3 (a.k.a. CENP-A). Unlike canonical histones that are invariant, CENH3 proteins are accumulating substitutions at an accelerated rate. This diversification of CENH3 is a conundrum since its role as the key determinant of centromere identity remains a constant across species. Here, we ask whether naturally occurring divergence in CENH3 has functional consequences. We performed functional complementation assays on cenh3-1, a null mutation in Arabidopsis thaliana, using untagged CENH3s from increasingly distant relatives. Contrary to previous results using GFP-tagged CENH3, we find that the essential functions of CENH3 are conserved across a broad evolutionary landscape. CENH3 from a species as distant as the monocot Zea mays can functionally replace A. thaliana CENH3. Plants expressing variant CENH3s that are fertile when selfed show dramatic segregation errors when crossed to a wild-type individual. The progeny of this cross include hybrid diploids, aneuploids with novel genetic rearrangements and haploids that inherit only the genome of the wild-type parent. Importantly, it is always chromosomes from the plant expressing the divergent CENH3 that missegregate. Using chimeras, we show that it is divergence in the fast-evolving N-terminal tail of CENH3 that is causing segregation errors and genome elimination. Furthermore, we analyzed N-terminal tail sequences from plant CENH3s and discovered a modular pattern of sequence conservation. From this we hypothesize that while the essential functions of CENH3 are largely conserved, the N-terminal tail is evolving to adapt to lineage-specific centromeric constraints. Our results demonstrate that this lineage-specific evolution of CENH3 causes inviability and sterility of progeny in crosses, at the same time producing karyotypic variation. Thus, CENH3 evolution can contribute to postzygotic reproductive barriers.
纺锤体微管与中期染色体的附着点被称为着丝粒。植物和动物的着丝粒是由组蛋白H3的着丝粒特异性变体CENH3(又称CENP - A)在表观遗传上确定的。与不变的经典组蛋白不同,CENH3蛋白正在以加速的速率积累替换。CENH3的这种多样化是一个难题,因为它作为着丝粒身份的关键决定因素的作用在物种间保持不变。在这里,我们探讨CENH3中自然发生的差异是否具有功能后果。我们使用来自亲缘关系越来越远的未标记CENH3,对拟南芥中的无效突变体cenh3 - 1进行了功能互补试验。与之前使用绿色荧光蛋白标记的CENH3的结果相反,我们发现CENH3的基本功能在广泛的进化范围内是保守的。来自单子叶植物玉米等远缘物种的CENH3能够在功能上替代拟南芥CENH3。表达变异CENH3的植物自交时可育,但与野生型个体杂交时会出现明显的分离错误。这种杂交的后代包括杂交二倍体、具有新基因重排的非整倍体以及仅继承野生型亲本基因组的单倍体。重要的是,总是来自表达不同CENH3的植物的染色体发生错误分离。使用嵌合体,我们表明是CENH3快速进化的N端尾部的差异导致了分离错误和基因组消除。此外,我们分析了植物CENH3的N端尾部序列,发现了序列保守的模块化模式。由此我们推测,虽然CENH3的基本功能在很大程度上是保守的,但N端尾部正在进化以适应特定谱系的着丝粒限制。我们的结果表明,CENH3的这种特定谱系进化导致杂交后代的 inviability 和不育,同时产生核型变异。因此,CENH3进化可导致合子后生殖障碍。