1] London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH, UK [2] Department of Physics &Astronomy, UCL, London WC1E 6BT, UK.
London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH, UK.
Nat Nanotechnol. 2015 Mar;10(3):259-63. doi: 10.1038/nnano.2014.326. Epub 2015 Jan 26.
Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications.
对磁场高度敏感的现象可被用于传感器和非易失性存储器中。将这些现象缩小到单分子水平可能会实现新型的自旋电子器件。在这里,我们报告了在单分子结中出现的磁电阻现象,该现象源于负微分电阻,其在磁场中的移动速率比塞曼位移大两个数量级。这种对磁场的敏感性产生了两种可通过外加偏压选择的电压可调磁电阻形式。负微分电阻是由在 Cu(001)表面上的单层氮化铜 (Cu2N) 上的铁酞菁 (FePc) 分子的暂态充电引起的,并且出现在与 Cu(001)费米能级对齐的填充和空分子态的尖锐共振对应的电压下。非对称电压分配器效应增强了负微分电阻随磁场的表观电压位移,该位移固有地处于塞曼能量的尺度上。这些结果说明了不对称耦合到金属电极对通过分子的输运的影响,并强调了这种耦合如何用于开发分子自旋电子学应用。