Smith Caren E, Follis Jack L, Nettleton Jennifer A, Foy Millennia, Wu Jason H Y, Ma Yiyi, Tanaka Toshiko, Manichakul Ani W, Wu Hongyu, Chu Audrey Y, Steffen Lyn M, Fornage Myriam, Mozaffarian Dariush, Kabagambe Edmond K, Ferruci Luigi, Chen Yii-Der Ida, Rich Stephen S, Djoussé Luc, Ridker Paul M, Tang Weihong, McKnight Barbara, Tsai Michael Y, Bandinelli Stefania, Rotter Jerome I, Hu Frank B, Chasman Daniel I, Psaty Bruce M, Arnett Donna K, King Irena B, Sun Qi, Wang Lu, Lumley Thomas, Chiuve Stephanie E, Siscovick David S, Ordovás José M, Lemaitre Rozenn N
Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA*
Department of Mathematics, Computer Science, and Cooperative Engineering, University of St. Thomas, Houston, TX, USA.
Mol Nutr Food Res. 2015 Jul;59(7):1373-83. doi: 10.1002/mnfr.201400734. Epub 2015 Mar 16.
Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid, eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid.
We conducted meta-analyses (N = 11 668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein), and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma versus erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary alpha-linolenic acid and linoleic acid for docosahexaenoic acid and docosapentaenoic acid.
Our findings reinforce earlier reports that genetically based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes.
ω-3脂肪酸的组织浓度可能会降低心血管疾病风险,并且基因变异与循环脂肪酸浓度相关。饮食脂肪酸是否与基因变异相互作用以改变循环中的ω-3脂肪酸尚不清楚。我们评估了基因变异与脂肪酸摄入量之间对于循环中的α-亚麻酸、二十碳五烯酸、二十二碳六烯酸和二十二碳五烯酸的相互作用。
我们进行了荟萃分析(N = 11668),评估饮食脂肪酸与基因变异(脂肪酸去饱和酶1(FADS1)中的rs174538和rs174548、1-酰基-sn-甘油-3-磷酸酰基转移酶3(AGPAT3)中的rs7435、含吡哆醛依赖性脱羧酶结构域1(PDXDC1)中的rs4985167、葡萄糖激酶调节蛋白(GCKR)中的rs780094以及脂肪酸延长酶2(ELOVL2)中的rs3734398)之间的相互作用。按测量隔室(血浆与红细胞)分层显示,FADS1的rs174538和rs174548与饮食中的α-亚麻酸和亚油酸之间存在隔室特异性相互作用,涉及二十二碳六烯酸和二十二碳五烯酸。
我们的研究结果强化了早期报告,即循环脂肪酸中基于基因的差异可能部分归因于脂肪酸前体转化的差异。此外,脂肪酸测量隔室可能会改变基因与饮食的关系,考虑隔室可能会改善对循环脂肪酸结果的基因-脂肪酸相互作用的检测。