Dodd Ian C, Puértolas Jaime, Huber Katrin, Pérez-Pérez Juan Gabriel, Wright Hannah R, Blackwell Martin S A
Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster LA1 1YQ, UK
Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster LA1 1YQ, UK.
J Exp Bot. 2015 Apr;66(8):2239-52. doi: 10.1093/jxb/eru532. Epub 2015 Jan 26.
Soil drying and re-wetting (DRW) occurs at varying frequencies and intensities during crop production, and is deliberately used in water-saving irrigation techniques that aim to enhance crop water use efficiency. Soil drying not only limits root water uptake which can (but not always) perturb shoot water status, but also alters root synthesis of phytohormones and their transport to shoots to regulate leaf growth and gas exchange. Re-wetting the soil rapidly restores leaf water potential and leaf growth (minutes to hours), but gas exchange recovers more slowly (hours to days), probably mediated by sustained changes in root to shoot phytohormonal signalling. Partial rootzone drying (PRD) deliberately irrigates only part of the rootzone, while the remainder is allowed to dry. Alternating these wet and dry zones (thus re-wetting dry soil) substantially improves crop yields compared with maintaining fixed wet and dry zones or conventional deficit irrigation, and modifies phytohormonal (especially abscisic acid) signalling. Alternate wetting and drying (AWD) of rice can also improve yield compared with paddy culture, and is correlated with altered phytohormonal (including cytokinin) signalling. Both PRD and AWD can improve crop nutrition, and re-wetting dry soil provokes both physical and biological changes which affect soil nutrient availability. Whether this alters crop nutrient uptake depends on competition between plant and microbes for nutrients, with the rate of re-wetting determining microbial dynamics. Nevertheless, studies that examine the effects of soil DRW on both crop nutritional and phytohormonal responses are relatively rare; thus, determining the cause(s) of enhanced crop yields under AWD and PRD remains challenging.
在作物生产过程中,土壤干湿交替(DRW)以不同的频率和强度发生,并且被有意用于旨在提高作物水分利用效率的节水灌溉技术中。土壤干燥不仅会限制根系对水分的吸收,这可能(但并非总是)扰乱地上部的水分状况,还会改变根系中植物激素的合成及其向地上部的运输,从而调节叶片生长和气体交换。重新湿润土壤能迅速恢复叶片水势和叶片生长(数分钟至数小时),但气体交换恢复得更慢(数小时至数天),这可能是由根到地上部植物激素信号的持续变化介导的。部分根区干燥(PRD)仅对部分根区进行灌溉,而其余部分则任其干燥。与维持固定的干湿区域或传统的亏缺灌溉相比,交替这些干湿区域(从而重新湿润干燥土壤)能显著提高作物产量,并改变植物激素(尤其是脱落酸)信号。与淹水栽培相比,水稻的干湿交替(AWD)也能提高产量,并且与植物激素(包括细胞分裂素)信号的改变有关。PRD和AWD都能改善作物营养,重新湿润干燥土壤会引发物理和生物学变化,从而影响土壤养分有效性。这是否会改变作物对养分的吸收取决于植物和微生物对养分的竞争,重新湿润的速率决定了微生物动态。然而,研究土壤干湿交替对作物营养和植物激素反应影响的研究相对较少;因此,确定在AWD和PRD条件下作物产量提高的原因仍然具有挑战性。