Mandair Gurjit S, Morris Michael D
Department of Chemistry, University of Michigan , Ann Arbor, MI, USA.
Bonekey Rep. 2015 Jan 7;4:620. doi: 10.1038/bonekey.2014.115. eCollection 2015.
Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.
拉曼光谱越来越普遍地用于了解骨成分和结构的变化如何影响组织水平的骨力学性能。这种光谱技术不仅能提供有关骨矿物质和基质胶原蛋白成分的信息,还能提供各种基质蛋白对骨材料性能影响的信息。骨的拉曼光谱不仅包含与骨硬度相关的骨矿物质结晶度信息,还能提供矿物质微晶相对于胶原纤维轴取向的信息。关于胶原交联的间接信息也可获得,将在文中进行讨论。在简要介绍骨拉曼光谱参数和采集方法后,将回顾动物和人体研究中体内拉曼光谱测量的进展。将重点讨论衰老、成骨不全、骨质疏松症和治疗药物对骨成分和力学性能的影响,包括探索结构-功能和运动效应的基因小鼠模型。同样,也将回顾与骨材料性能调节有关的细胞外基质蛋白、蛋白酶和转录蛋白。