Marée Raphaël
Department of Electrical Engineering and Computer Science, Montefiore Institute, University of Liège, 4000 Liège, Belgium.
J Pathol Inform. 2017 Apr 10;8:19. doi: 10.4103/jpi.jpi_94_16. eCollection 2017.
Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.
有效的模式识别需要精心设计的真值数据集。在本技术说明中,我们首先总结数字病理学中潜在的数据收集问题,然后提出构建更现实的真值数据集并控制其质量的指导方针。我们希望我们的评论将促进模式识别方法在数字病理学中的有效应用。