Suppr超能文献

基底外侧杏仁核和眶额皮质在惩罚风险下决策中的不同作用。

Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment.

作者信息

Orsini Caitlin A, Trotta Rose T, Bizon Jennifer L, Setlow Barry

机构信息

Departments of Psychiatry and

Departments of Psychiatry and.

出版信息

J Neurosci. 2015 Jan 28;35(4):1368-79. doi: 10.1523/JNEUROSCI.3586-14.2015.

Abstract

Several neuropsychiatric disorders are associated with abnormal decision-making involving risk of punishment, but the neural basis of this association remains poorly understood. Altered activity in brain systems including the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) can accompany these same disorders, and these structures are implicated in some forms of decision-making. The current study investigated the role of the BLA and OFC in decision-making under risk of explicit punishment. Rats were trained in the risky decision-making task (RDT), in which they chose between two levers, one that delivered a small safe reward, and the other that delivered a large reward accompanied by varying risks of footshock punishment. Following training, they received sham or neurotoxic lesions of BLA or OFC, followed by RDT retesting. BLA lesions increased choice of the large risky reward (greater risk-taking) compared to both prelesion performance and sham controls. When reward magnitudes were equated, both BLA lesion and control groups shifted their choice to the safe (no shock) reward lever, indicating that the lesions did not impair punishment sensitivity. In contrast to BLA lesions, OFC lesions significantly decreased risk-taking compared with sham controls, but did not impair discrimination between different reward magnitudes or alter baseline levels of anxiety. Finally, neither lesion significantly affected food-motivated lever pressing under various fixed ratio schedules, indicating that lesion-induced alterations in risk-taking were not secondary to changes in appetitive motivation. Together, these findings indicate distinct roles for the BLA and OFC in decision-making under risk of explicit punishment.

摘要

几种神经精神疾病与涉及惩罚风险的异常决策有关,但这种关联的神经基础仍知之甚少。包括基底外侧杏仁核(BLA)和眶额皮质(OFC)在内的脑系统活动改变可伴随这些相同的疾病,并且这些结构与某些形式的决策有关。当前的研究调查了BLA和OFC在明确惩罚风险下的决策中的作用。大鼠接受了风险决策任务(RDT)训练,在该任务中,它们在两个杠杆之间进行选择,一个杠杆提供小的安全奖励,另一个杠杆提供大的奖励,但伴随着不同的足部电击惩罚风险。训练后,它们接受了BLA或OFC的假手术或神经毒性损伤,然后进行RDT重新测试。与损伤前的表现和假手术对照组相比,BLA损伤增加了对大风险奖励的选择(更大的冒险行为)。当奖励幅度相等时,BLA损伤组和对照组都将选择转向了安全(无电击)奖励杠杆,这表明损伤并没有损害惩罚敏感性。与BLA损伤相反,与假手术对照组相比,OFC损伤显著降低了冒险行为,但没有损害对不同奖励幅度的辨别能力,也没有改变基线焦虑水平。最后,两种损伤都没有显著影响在各种固定比率时间表下由食物驱动的杠杆按压,这表明损伤引起的冒险行为改变并非继发于食欲动机的变化。总之,这些发现表明BLA和OFC在明确惩罚风险下的决策中具有不同的作用。

相似文献

2
Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict.
Psychopharmacology (Berl). 2020 Mar;237(3):639-654. doi: 10.1007/s00213-019-05398-7. Epub 2020 Jan 7.
3
Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making.
J Neurosci. 2017 Nov 29;37(48):11537-11548. doi: 10.1523/JNEUROSCI.2344-17.2017. Epub 2017 Oct 27.
4
6
Contributions of medial prefrontal cortex to decision making involving risk of punishment.
Neuropharmacology. 2018 Sep 1;139:205-216. doi: 10.1016/j.neuropharm.2018.07.018. Epub 2018 Jul 20.
7
Balancing risk and reward: a rat model of risky decision making.
Neuropsychopharmacology. 2009 Sep;34(10):2208-17. doi: 10.1038/npp.2009.48. Epub 2009 May 13.
8
Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations.
J Neurosci. 2017 Aug 30;37(35):8374-8384. doi: 10.1523/JNEUROSCI.0486-17.2017. Epub 2017 Jul 25.
9
Basolateral amygdala lesions facilitate reward choices after negative feedback in rats.
J Neurosci. 2013 Feb 27;33(9):4105-9. doi: 10.1523/JNEUROSCI.4942-12.2013.
10
Affective and cognitive mechanisms of risky decision making.
Neurobiol Learn Mem. 2015 Jan;117:60-70. doi: 10.1016/j.nlm.2014.03.002. Epub 2014 Mar 15.

引用本文的文献

1
Effects of systemic oxytocin receptor activation and blockade on risky decision making in female and male rats.
Behav Neurosci. 2025 Jun;139(3):137-152. doi: 10.1037/bne0000621. Epub 2025 Apr 7.
2
Effects of maternal separation on punishment-driven risky decision making in adolescence and adulthood.
Neurobiol Learn Mem. 2025 Jan;217:108016. doi: 10.1016/j.nlm.2024.108016. Epub 2024 Dec 19.
3
Remission from addiction: erasing the wrong circuits or making new ones?
Nat Rev Neurosci. 2025 Feb;26(2):115-130. doi: 10.1038/s41583-024-00886-y. Epub 2024 Dec 11.
4
Social Risk Coding by Amygdala Activity and Connectivity with the Dorsal Anterior Cingulate Cortex.
J Neurosci. 2025 Jan 29;45(5):e1149242024. doi: 10.1523/JNEUROSCI.1149-24.2024.
5
Sex differences in sensitivity to dopamine receptor manipulations of risk-based decision making in rats.
Neuropsychopharmacology. 2024 Dec;49(13):1978-1988. doi: 10.1038/s41386-024-01925-z. Epub 2024 Jul 23.
8
Acute stress differentially alters reward-related decision making and inhibitory control under threat of punishment.
Neurobiol Stress. 2024 Apr 5;30:100633. doi: 10.1016/j.ynstr.2024.100633. eCollection 2024 May.
9
Orbitofrontal and Prelimbic Cortices Serve Complementary Roles in Adapting Reward Seeking to Learned Anxiety.
Biol Psychiatry. 2024 Nov 1;96(9):727-738. doi: 10.1016/j.biopsych.2024.02.1015. Epub 2024 Mar 7.
10
Dorsal and ventral fronto-amygdala networks underlie risky decision-making in age-related cognitive decline.
Geroscience. 2024 Feb;46(1):447-462. doi: 10.1007/s11357-023-00922-2. Epub 2023 Sep 12.

本文引用的文献

1
Affective and cognitive mechanisms of risky decision making.
Neurobiol Learn Mem. 2015 Jan;117:60-70. doi: 10.1016/j.nlm.2014.03.002. Epub 2014 Mar 15.
2
Testosterone enhances risk tolerance without altering motor impulsivity in male rats.
Psychoneuroendocrinology. 2014 Feb;40:201-12. doi: 10.1016/j.psyneuen.2013.11.017. Epub 2013 Dec 1.
3
Adolescent risk taking, cocaine self-administration, and striatal dopamine signaling.
Neuropsychopharmacology. 2014 Mar;39(4):955-62. doi: 10.1038/npp.2013.295. Epub 2013 Oct 22.
4
Impulsivity and risk taking in bipolar disorder and schizophrenia.
Neuropsychopharmacology. 2014 Jan;39(2):456-63. doi: 10.1038/npp.2013.218. Epub 2013 Aug 21.
5
Learning theory: a driving force in understanding orbitofrontal function.
Neurobiol Learn Mem. 2014 Feb;108:22-7. doi: 10.1016/j.nlm.2013.06.003. Epub 2013 Jun 14.
6
Altered risk-related processing in substance users: imbalance of pain and gain.
Drug Alcohol Depend. 2013 Sep 1;132(1-2):13-21. doi: 10.1016/j.drugalcdep.2013.03.019. Epub 2013 Apr 23.
7
Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa.
Trends Neurosci. 2013 Feb;36(2):110-20. doi: 10.1016/j.tins.2013.01.003. Epub 2013 Jan 18.
9
Clinical and functional outcome of childhood attention-deficit/hyperactivity disorder 33 years later.
Arch Gen Psychiatry. 2012 Dec;69(12):1295-303. doi: 10.1001/archgenpsychiatry.2012.271.
10
Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice.
Cereb Cortex. 2014 Jan;24(1):154-62. doi: 10.1093/cercor/bhs297. Epub 2012 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验