Department of Psychological and Brain Sciences, UCSB, Santa Barbara, CA, USA,
Brain Imaging Behav. 2014 Jun;8(2):292-9. doi: 10.1007/s11682-013-9254-z.
Disconnections between structures in the brain have long been hypothesized to be the mechanism behind numerous disease states and pathological behavioral phenotypes. Advances in diffusion weighted imaging (DWI) provide an opportunity to study white matter, and therefore brain connectivity, in great detail. DWI-based research assesses white matter at two different scales: voxelwise indexes of anisotropy such as fractional anisotropy (FA) are used to compare small units of tissue and network-based methods compare tractography-based models of whole-brain connectivity. We propose a method called local termination pattern analysis (LTPA) that considers information about both local and global brain connectivity simultaneously. LTPA itemizes the subset of streamlines that pass through a small set of white matter voxels. The "local termination pattern" is a vector defined by counts of these streamlines terminating in pairs of cortical regions. To assess the reliability of our method we applied LTPA exhaustively over white matter voxels to produce complete maps of local termination pattern similarity, based on diffusion spectrum imaging (DSI) data from 11 individuals in triplicate. Here we show that local termination patterns from an individual are highly reproducible across the entire brain. We discuss how LTPA can be deployed into a clinical database and used to characterize white matter morphology differences due to disease, developmental or genetic factors.
脑内结构的连接中断一直被认为是许多疾病状态和病理性行为表型的背后机制。扩散加权成像(DWI)的进步为研究白质,从而详细研究大脑连接提供了机会。基于 DWI 的研究从两个不同的尺度评估白质:各向异性的体素指标,如分数各向异性(FA),用于比较组织的小单位;基于网络的方法则比较全脑连接的轨迹追踪模型。我们提出了一种称为局部终止模式分析(LTPA)的方法,该方法同时考虑了局部和全局脑连接的信息。LTPA 列出了穿过一小部分白质体素的流线子集。“局部终止模式”是一个由这些流线终止于皮质区域对的计数定义的向量。为了评估我们方法的可靠性,我们在重复的来自 11 个人的扩散谱成像(DSI)数据上,对整个大脑的白质体素进行了详尽的 LTPA 应用,以生成局部终止模式相似性的完整图谱。在这里,我们表明个体的局部终止模式在整个大脑中具有高度的可重复性。我们讨论了如何将 LTPA 部署到临床数据库中,并用于描述由于疾病、发育或遗传因素导致的白质形态差异。