Suppr超能文献

霍乱毒素B亚基作为脂筏交联剂的功能。

Functions of cholera toxin B-subunit as a raft cross-linker.

作者信息

Day Charles A, Kenworthy Anne K

机构信息

*Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A.

出版信息

Essays Biochem. 2015;57:135-45. doi: 10.1042/bse0570135.

Abstract

Lipid rafts are putative complexes of lipids and proteins in cellular membranes that are proposed to function in trafficking and signalling events. CTxB (cholera toxin B-subunit) has emerged as one of the most studied examples of a raft-associated protein. Consisting of the membrane-binding domain of cholera toxin, CTxB binds up to five copies of its lipid receptor on the plasma membrane of the host cell. This multivalency of binding gives the toxin the ability to reorganize underlying membrane structure by cross-linking otherwise small and transient lipid rafts. CTxB thus serves as a useful model for understanding the properties and functions of protein-stabilized domains. In the present chapter, we summarize current evidence that CTxB associates with and cross-links lipid rafts, discuss how CTxB binding modulates the architecture and dynamics of membrane domains, and describe the functional consequences of this cross-linking behaviour on toxin uptake into cells via endocytosis.

摘要

脂筏是细胞膜中脂质和蛋白质的假定复合物,被认为在运输和信号传导事件中发挥作用。霍乱毒素B亚基(CTxB)已成为研究最多的脂筏相关蛋白之一。CTxB由霍乱毒素的膜结合结构域组成,可在宿主细胞质膜上结合多达五个脂质受体拷贝。这种多价结合使毒素能够通过交联原本小而短暂的脂筏来重组潜在的膜结构。因此,CTxB是理解蛋白质稳定结构域的特性和功能的有用模型。在本章中,我们总结了目前关于CTxB与脂筏结合并交联的证据,讨论了CTxB结合如何调节膜结构域的结构和动力学,并描述了这种交联行为对毒素通过内吞作用进入细胞的功能影响。

相似文献

1
Functions of cholera toxin B-subunit as a raft cross-linker.
Essays Biochem. 2015;57:135-45. doi: 10.1042/bse0570135.
2
Glycolipid Crosslinking Is Required for Cholera Toxin to Partition Into and Stabilize Ordered Domains.
Biophys J. 2016 Dec 20;111(12):2547-2550. doi: 10.1016/j.bpj.2016.11.008. Epub 2016 Nov 30.
3
Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
Biochim Biophys Acta. 2012 Jul;1818(7):1777-84. doi: 10.1016/j.bbamem.2012.03.007.
4
Dynamics and size of cross-linking-induced lipid nanodomains in model membranes.
Biophys J. 2012 May 2;102(9):2104-13. doi: 10.1016/j.bpj.2012.03.054.
5
Fluorescence recovery after photobleaching studies of lipid rafts.
Methods Mol Biol. 2007;398:179-92. doi: 10.1007/978-1-59745-513-8_13.
6
Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14978-14986. doi: 10.1073/pnas.2001119117. Epub 2020 Jun 17.
7
Mechanisms underlying the confined diffusion of cholera toxin B-subunit in intact cell membranes.
PLoS One. 2012;7(4):e34923. doi: 10.1371/journal.pone.0034923. Epub 2012 Apr 12.
8
Cholera Toxin as a Probe for Membrane Biology.
Toxins (Basel). 2021 Aug 3;13(8):543. doi: 10.3390/toxins13080543.
10
Fluorescence correlation spectroscopy relates rafts in model and native membranes.
Biophys J. 2004 Aug;87(2):1034-43. doi: 10.1529/biophysj.104.040519.

引用本文的文献

2
Sorting of complex sphingolipids within the cellular endomembrane systems.
Front Cell Dev Biol. 2025 Feb 26;12:1490870. doi: 10.3389/fcell.2024.1490870. eCollection 2024.
3
Volume-regulated anion channels conduct ATP in undifferentiated mammary cells and promote tumorigenesis in xenograft nude mouse.
Front Cell Dev Biol. 2025 Jan 15;12:1519642. doi: 10.3389/fcell.2024.1519642. eCollection 2024.
4
Cholesterol mobilization regulates dendritic cell maturation and the immunogenic response to cancer.
Nat Immunol. 2025 Feb;26(2):188-199. doi: 10.1038/s41590-024-02065-8. Epub 2025 Jan 21.
5
A Patching and Coding Lipid Raft-Localized Universal Imaging Platform.
Chem Biomed Imaging. 2023 Nov 29;2(2):135-146. doi: 10.1021/cbmi.3c00109. eCollection 2024 Feb 26.
6
Glucose-dependent glycosphingolipid biosynthesis fuels CD8 T cell function and tumor control.
bioRxiv. 2024 Oct 14:2024.10.10.617261. doi: 10.1101/2024.10.10.617261.
7
Sortase-Modified Cholera Toxoids Show Specific Golgi Localization.
Toxins (Basel). 2024 Apr 16;16(4):194. doi: 10.3390/toxins16040194.
8
Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing?
Biomolecules. 2024 Jan 28;14(2):156. doi: 10.3390/biom14020156.
9
Lipid Peroxidation Drives Liquid-Liquid Phase Separation and Disrupts Raft Protein Partitioning in Biological Membranes.
J Am Chem Soc. 2024 Jan 17;146(2):1374-1387. doi: 10.1021/jacs.3c10132. Epub 2024 Jan 3.

本文引用的文献

1
Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains.
Biochim Biophys Acta. 2013 Mar;1828(3):1102-11. doi: 10.1016/j.bbamem.2012.12.004. Epub 2012 Dec 13.
5
Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins.
Front Cell Infect Microbiol. 2012 Apr 11;2:51. doi: 10.3389/fcimb.2012.00051. eCollection 2012.
6
Curvature sorting of peripheral proteins on solid-supported wavy membranes.
Langmuir. 2012 Sep 4;28(35):12838-43. doi: 10.1021/la302205b. Epub 2012 Aug 23.
7
Dynamics and size of cross-linking-induced lipid nanodomains in model membranes.
Biophys J. 2012 May 2;102(9):2104-13. doi: 10.1016/j.bpj.2012.03.054.
8
Elucidating membrane structure and protein behavior using giant plasma membrane vesicles.
Nat Protoc. 2012 May 3;7(6):1042-51. doi: 10.1038/nprot.2012.059.
9
Mechanisms underlying the confined diffusion of cholera toxin B-subunit in intact cell membranes.
PLoS One. 2012;7(4):e34923. doi: 10.1371/journal.pone.0034923. Epub 2012 Apr 12.
10
Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function.
Cell. 2011 Aug 19;146(4):593-606. doi: 10.1016/j.cell.2011.06.049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验