Suppr超能文献

计算机断层扫描筛查中的肺结节与癌症检测。

Lung nodule and cancer detection in computed tomography screening.

作者信息

Rubin Geoffrey D

机构信息

Duke Clinical Research Institute, Durham, NC.

出版信息

J Thorac Imaging. 2015 Mar;30(2):130-8. doi: 10.1097/RTI.0000000000000140.

Abstract

Fundamental to the diagnosis of lung cancer in computed tomography (CT) scans is the detection and interpretation of lung nodules. As the capabilities of CT scanners have advanced, higher levels of spatial resolution reveal tinier lung abnormalities. Not all detected lung nodules should be reported; however, radiologists strive to detect all nodules that might have relevance to cancer diagnosis. Although medium to large lung nodules are detected consistently, interreader agreement and reader sensitivity for lung nodule detection diminish substantially as the nodule size falls below 8 to 10 mm. The difficulty in establishing an absolute reference standard presents a challenge to the reliability of studies performed to evaluate lung nodule detection. In the interest of improving detection performance, investigators are using eye tracking to analyze the effectiveness with which radiologists search CT scans relative to their ability to recognize nodules within their search path in order to determine whether strategies might exist to improve performance across readers. Beyond the viewing of transverse CT reconstructions, image processing techniques such as thin-slab maximum-intensity projections are used to substantially improve reader performance. Finally, the development of computer-aided detection has continued to evolve with the expectation that one day it will serve routinely as a tireless partner to the radiologist to enhance detection performance without significant prolongation of the interpretive process. This review provides an introduction to the current understanding of these varied issues as we enter the era of widespread lung cancer screening.

摘要

在计算机断层扫描(CT)中,肺癌诊断的基础是肺结节的检测与解读。随着CT扫描仪性能的提升,更高的空间分辨率能够显示出更小的肺部异常。并非所有检测到的肺结节都需要报告;然而,放射科医生致力于检测所有可能与癌症诊断相关的结节。尽管中大型肺结节能够被持续检测到,但当结节大小低于8至10毫米时,不同阅片者之间的一致性以及阅片者检测肺结节的敏感性会大幅下降。建立绝对参考标准的困难对评估肺结节检测的研究可靠性构成了挑战。为了提高检测性能,研究人员正在使用眼动追踪技术,分析放射科医生在CT扫描中搜索的有效性,以及他们在搜索路径中识别结节的能力,以确定是否存在提高所有阅片者检测性能的策略。除了观察横断位CT重建图像外,诸如薄层最大密度投影等图像处理技术也被用于大幅提高阅片者的性能。最后,计算机辅助检测技术不断发展,人们期望有一天它能成为放射科医生的得力助手,在不显著延长解读过程的情况下提高检测性能。随着我们进入广泛肺癌筛查时代,本综述对当前对这些不同问题的理解进行了介绍。

相似文献

引用本文的文献

10
Hierarchical classification of early microscopic lung nodule based on cascade network.基于级联网络的早期微小肺结节分层分类
Health Inf Sci Syst. 2024 Feb 23;12(1):13. doi: 10.1007/s13755-024-00273-y. eCollection 2024 Dec.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验