Suppr超能文献

大腿袖带操作的脑血管效应。

Cerebrovascular effects of the thigh cuff maneuver.

作者信息

Panerai R B, Saeed N P, Robinson T G

机构信息

University of Leicester, Department of Cardiovascular Sciences, Leicester Royal Infirmary, Leicester, United Kingdom; and National Institutes for Health Research, Biomedical Research Unit in Cardiovascular Science, Glenfield Hospital, Leicester, United Kingdom

University of Leicester, Department of Cardiovascular Sciences, Leicester Royal Infirmary, Leicester, United Kingdom; and.

出版信息

Am J Physiol Heart Circ Physiol. 2015 Apr 1;308(7):H688-96. doi: 10.1152/ajpheart.00887.2014. Epub 2015 Feb 6.

Abstract

Arterial hypotension can be induced by sudden release of inflated thigh cuffs (THC), but its effects on the cerebral circulation have not been fully described. In nine healthy subjects [aged 59 (9) yr], bilateral cerebral blood flow velocity (CBFV) was recorded in the middle cerebral artery (MCA), noninvasive arterial blood pressure (BP) in the finger, and end-tidal CO2 (ETCO2) with nasal capnography. Three THC maneuvers were performed in each subject with cuff inflation 20 mmHg above systolic BP for 3 min before release. Beat-to-beat values were extracted for mean CBFV, BP, ETCO2 , critical closing pressure (CrCP), resistance-area product (RAP), and heart rate (HR). Time-varying estimates of the autoregulation index [ARI(t)] were also obtained using an autoregressive-moving average model. Coherent averages synchronized by the instant of cuff release showed significant drops in mean BP, CBFV, and RAP with rapid return of CBFV to baseline. HR, ETCO2 , and ARI(t) were transiently increased, but CrCP remained relatively constant. Mean values of ARI(t) for the 30 s following cuff release were not significantly different from the classical ARI [right MCA 5.9 (1.1) vs. 5.1 (1.6); left MCA 5.5 (1.4) vs. 4.9 (1.7)]. HR was strongly correlated with the ARI(t) peak after THC release (in 17/22 and 21/24 recordings), and ETCO2 was correlated with the subsequent drop in ARI(t) (19/22 and 20/24 recordings). These results suggest a complex cerebral autoregulatory response to the THC maneuver, dominated by myogenic mechanisms and influenced by concurrent changes in ETCO2 and possible involvement of the autonomic nervous system and baroreflex.

摘要

大腿袖带充气突然释放(THC)可诱发动脉低血压,但其对脑循环的影响尚未完全阐明。在9名健康受试者[年龄59(9)岁]中,记录了大脑中动脉(MCA)的双侧脑血流速度(CBFV)、手指无创动脉血压(BP)以及采用鼻罩式二氧化碳监测仪测得的呼气末二氧化碳(ETCO2)。对每位受试者进行3次THC操作,在袖带释放前将袖带充气至收缩压以上20 mmHg并持续3分钟。提取逐搏的平均CBFV、BP、ETCO2、临界关闭压(CrCP)、阻力-面积乘积(RAP)和心率(HR)值。还使用自回归移动平均模型获得了自调节指数[ARI(t)]的时变估计值。以袖带释放瞬间同步的相干平均值显示,平均BP、CBFV和RAP显著下降,CBFV迅速恢复至基线水平。HR、ETCO2和ARI(t)短暂升高,但CrCP保持相对恒定。袖带释放后30秒内ARI(t)的平均值与经典ARI无显著差异[右侧MCA为5.9(1.1)对5.1(1.6);左侧MCA为5.5(1.4)对4.9(1.7)]。THC释放后HR与ARI(t)峰值密切相关(17/22和21/24记录),ETCO2与随后ARI(t)的下降相关(19/22和20/24记录)。这些结果表明,THC操作可引发复杂的脑自调节反应,以肌源性机制为主导,并受ETCO2的同时变化以及自主神经系统和压力反射可能参与的影响。

相似文献

1
Cerebrovascular effects of the thigh cuff maneuver.
Am J Physiol Heart Circ Physiol. 2015 Apr 1;308(7):H688-96. doi: 10.1152/ajpheart.00887.2014. Epub 2015 Feb 6.
2
Dynamics of the cerebral autoregulatory response to paced hyperventilation assessed using subcomponent and time-varying analyses.
J Appl Physiol (1985). 2022 Aug 1;133(2):311-319. doi: 10.1152/japplphysiol.00100.2022. Epub 2022 Jun 23.
3
Cerebral critical closing pressure and resistance-area product: the influence of dynamic cerebral autoregulation, age and sex.
J Cereb Blood Flow Metab. 2021 Sep;41(9):2456-2469. doi: 10.1177/0271678X211004131. Epub 2021 Apr 4.
4
Determinants of cerebral blood flow velocity change during squat-stand maneuvers.
Am J Physiol Regul Integr Comp Physiol. 2021 Apr 1;320(4):R452-R466. doi: 10.1152/ajpregu.00291.2020. Epub 2021 Feb 3.
7
The relationship between cardiac output and dynamic cerebral autoregulation in humans.
J Appl Physiol (1985). 2010 Nov;109(5):1424-31. doi: 10.1152/japplphysiol.01262.2009. Epub 2010 Aug 5.
8
Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure.
Am J Physiol Heart Circ Physiol. 2001 May;280(5):H2162-74. doi: 10.1152/ajpheart.2001.280.5.H2162.
10
Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements.
Physiol Meas. 2008 Apr;29(4):497-513. doi: 10.1088/0967-3334/29/4/006. Epub 2008 Apr 9.

引用本文的文献

1
Dynamic cerebral autoregulation in people with mild cognitive impairment.
J Cereb Blood Flow Metab. 2025 Jun 3:271678X251345361. doi: 10.1177/0271678X251345361.
2
The method described by Czosnyka is particularly suitable for measuring CPPe in patients undergoing cerebral angiography.
Front Surg. 2025 Jan 6;11:1488265. doi: 10.3389/fsurg.2024.1488265. eCollection 2024.
4
Cerebrovascular CO reactivity and dynamic cerebral autoregulation through the eighth decade of life and their implications for cognitive decline.
J Cereb Blood Flow Metab. 2024 May;44(5):712-725. doi: 10.1177/0271678X231219568. Epub 2023 Dec 8.
5
Directional sensitivity of dynamic cerebral autoregulation during spontaneous fluctuations in arterial blood pressure at rest.
J Cereb Blood Flow Metab. 2023 Apr;43(4):552-564. doi: 10.1177/0271678X221142527. Epub 2022 Nov 24.
6
The Spatiotemporal Dynamics of Cerebral Autoregulation in Functional Magnetic Resonance Imaging.
Front Neurosci. 2022 Jul 8;16:795683. doi: 10.3389/fnins.2022.795683. eCollection 2022.
7
The INfoMATAS project: Methods for assessing cerebral autoregulation in stroke.
J Cereb Blood Flow Metab. 2022 Mar;42(3):411-429. doi: 10.1177/0271678X211029049. Epub 2021 Jul 19.
8
Vascular and haemodynamic issues of brain ageing.
Pflugers Arch. 2021 May;473(5):735-751. doi: 10.1007/s00424-020-02508-9. Epub 2021 Jan 13.
9
Assessment of cerebral autoregulation indices - a modelling perspective.
Sci Rep. 2020 Jun 15;10(1):9600. doi: 10.1038/s41598-020-66346-6.
10
Quantitative measurements of cerebral blood flow with near-infrared spectroscopy.
Biomed Opt Express. 2019 Mar 28;10(4):2117-2134. doi: 10.1364/BOE.10.002117. eCollection 2019 Apr 1.

本文引用的文献

1
A new model-free index of dynamic cerebral blood flow autoregulation.
PLoS One. 2014 Oct 14;9(10):e108281. doi: 10.1371/journal.pone.0108281. eCollection 2014.
2
Rapid pressure-to-flow dynamics of cerebral autoregulation induced by instantaneous changes of arterial CO2.
Med Eng Phys. 2014 Dec;36(12):1636-43. doi: 10.1016/j.medengphy.2014.09.005. Epub 2014 Oct 5.
3
Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects.
J Appl Physiol (1985). 2014 Aug 1;117(3):205-13. doi: 10.1152/japplphysiol.00893.2013. Epub 2014 Jun 12.
4
Why is the neural control of cerebral autoregulation so controversial?
F1000Prime Rep. 2014 Mar 3;6:14. doi: 10.12703/P6-14. eCollection 2014.
5
Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.
Med Eng Phys. 2014 May;36(5):592-600. doi: 10.1016/j.medengphy.2013.10.011. Epub 2013 Dec 2.
6
Nonstationarity of dynamic cerebral autoregulation.
Med Eng Phys. 2014 May;36(5):576-84. doi: 10.1016/j.medengphy.2013.09.004. Epub 2013 Oct 7.
7
Autonomic nervous system control of the cerebral circulation.
Handb Clin Neurol. 2013;117:193-201. doi: 10.1016/B978-0-444-53491-0.00016-X.
8
Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver.
PLoS One. 2013 Aug 14;8(8):e70821. doi: 10.1371/journal.pone.0070821. eCollection 2013.
9
Does hypercapnia-induced impairment of cerebral autoregulation affect neurovascular coupling? A functional TCD study.
J Appl Physiol (1985). 2013 Aug 15;115(4):491-7. doi: 10.1152/japplphysiol.00327.2013. Epub 2013 Jun 6.
10
Sympathetic regulation of cerebral blood flow in humans: a review.
Br J Anaesth. 2013 Sep;111(3):361-7. doi: 10.1093/bja/aet122. Epub 2013 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验