Baker Emily G, Bartlett Gail J, Crump Matthew P, Sessions Richard B, Linden Noah, Faul Charl F J, Woolfson Derek N
School of Chemistry, University of Bristol, Bristol, UK.
School of Biochemistry, University of Bristol, Bristol, UK.
Nat Chem Biol. 2015 Mar;11(3):221-8. doi: 10.1038/nchembio.1739. Epub 2015 Feb 9.
The noncovalent forces that stabilize protein structures are not fully understood. One way to address this is to study equilibria between unfolded states and α-helices in peptides. Electrostatic forces-which include interactions between side chains, the backbone and side chains, and side chains and the helix macrodipole-are believed to contribute to these equilibria. Here we probe these interactions experimentally using designed peptides. We find that both terminal backbone-side chain and certain side chain-side chain interactions (which include both local effects between proximal charges and interatomic contacts) contribute much more to helix stability than side chain-helix macrodipole electrostatics, which are believed to operate at larger distances. This has implications for current descriptions of helix stability, the understanding of protein folding and the refinement of force fields for biomolecular modeling and simulations. In addition, this study sheds light on the stability of rod-like structures formed by single α-helices, which are common in natural proteins such as non-muscle myosins.
稳定蛋白质结构的非共价力尚未得到充分理解。解决这一问题的一种方法是研究肽段中未折叠状态与α螺旋之间的平衡。静电力——包括侧链之间、主链与侧链之间以及侧链与螺旋大偶极之间的相互作用——被认为对这些平衡有贡献。在这里,我们使用设计肽段通过实验探究这些相互作用。我们发现,末端主链 - 侧链以及某些侧链 - 侧链相互作用(包括近端电荷之间的局部效应和原子间接触)对螺旋稳定性的贡献比侧链 - 螺旋大偶极静电力大得多,后者被认为在更大距离起作用。这对当前关于螺旋稳定性的描述、蛋白质折叠的理解以及生物分子建模和模拟的力场优化具有重要意义。此外,这项研究揭示了由单个α螺旋形成的棒状结构的稳定性,这种结构在非肌肉肌球蛋白等天然蛋白质中很常见。