文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

线粒体活性氧与癌症。

Mitochondrial reactive oxygen species and cancer.

机构信息

The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA.

出版信息

Cancer Metab. 2014 Nov 28;2:17. doi: 10.1186/2049-3002-2-17. eCollection 2014.


DOI:10.1186/2049-3002-2-17
PMID:25671107
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4323058/
Abstract

Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity. While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift has shown that mROS can act as signaling molecules to activate pro-growth responses. Cancer cells have long been observed to have increased production of ROS relative to normal cells, although the implications of this increase were not always clear. This is especially interesting considering cancer cells often also induce expression of antioxidant proteins. Here, we discuss how cancer-associated mutations and microenvironments can increase production of mROS, which can lead to activation of tumorigenic signaling and metabolic reprogramming. This tumorigenic signaling also increases expression of antioxidant proteins to balance the high production of ROS to maintain redox homeostasis. We also discuss how cancer-specific modifications to ROS and antioxidants may be targeted for therapy.

摘要

线粒体产生活性氧物质(mROS)是电子传递链活动的一种自然副产物。虽然最初的研究集中在活性氧物质的破坏作用上,但最近的范式转变表明,mROS 可以作为信号分子激活促生长反应。与正常细胞相比,癌细胞一直被观察到具有更高的 ROS 产生,尽管这种增加的意义并不总是清楚。这尤其有趣,因为癌细胞通常也会诱导抗氧化蛋白的表达。在这里,我们讨论了与癌症相关的突变和微环境如何增加 mROS 的产生,这可能导致致癌信号的激活和代谢重编程。这种致癌信号还会增加抗氧化蛋白的表达,以平衡 ROS 的高产生,从而维持氧化还原平衡。我们还讨论了如何针对 ROS 和抗氧化剂的癌症特异性修饰进行治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/6f797557b3ba/40170_2014_138_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/7e83570fe832/40170_2014_138_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/943d73b2bf2b/40170_2014_138_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/b272f1a34344/40170_2014_138_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/9089ebeabc38/40170_2014_138_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/4f8bb09baa5b/40170_2014_138_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/6f797557b3ba/40170_2014_138_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/7e83570fe832/40170_2014_138_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/943d73b2bf2b/40170_2014_138_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/b272f1a34344/40170_2014_138_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/9089ebeabc38/40170_2014_138_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/4f8bb09baa5b/40170_2014_138_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/4323058/6f797557b3ba/40170_2014_138_Fig6_HTML.jpg

相似文献

[1]
Mitochondrial reactive oxygen species and cancer.

Cancer Metab. 2014-11-28

[2]
Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure.

Circ Res. 2018-6-13

[3]
Mitochondrial reactive oxygen species in physiology and disease.

Cell Calcium. 2021-3

[4]
Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.

Biochim Biophys Acta. 2015

[5]
Role of mitochondrial reactive oxygen species in homeostasis regulation.

Redox Rep. 2022-12

[6]
Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.

Am J Ther. 2016

[7]
Genetic and cellular modifiers of oxidative stress: what can we learn from fatty acid oxidation defects?

Mol Genet Metab. 2013-10-12

[8]
Mitochondrial biogenesis: pharmacological approaches.

Curr Pharm Des. 2014

[9]
Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells.

Biochim Biophys Acta. 2010

[10]
Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress.

Comp Biochem Physiol B Biochem Mol Biol. 2016-1

引用本文的文献

[1]
The role of reactive oxygen species in the transformation from prostatitis to prostate cancer: a review.

Front Immunol. 2025-8-22

[2]
Living on the Edge: ROS Homeostasis in Cancer Cells and Its Potential as a Therapeutic Target.

Antioxidants (Basel). 2025-8-16

[3]
Sonodynamic Therapy-Based DNA Nanocarriers with Hypoxia-Inducible Factor-1α Silencing Activation for Precision Lung Cancer Therapy.

Biomater Res. 2025-8-21

[4]
Immobilization of Enzyme-Polymer Hybrids and Nanozymes Through Electrostatic Interactions: Toward Multicatalytic Microreactors with Controlled Nanoarchitecture.

Small Sci. 2025-6-10

[5]
Mitochondrial Metabolism in T-Cell Exhaustion.

Int J Mol Sci. 2025-7-31

[6]
Investigation on antineoplastic potential of Barleria lupulina Lindl: From phytochemical profiling to molecular dynamics simulation assessment.

J Ayurveda Integr Med. 2025-7-30

[7]
TIMM8B promotes oxidative phosphorylation and glycolysis by inhibiting the mtROS/ASK1/JNK signaling pathway in ovarian cancer.

Biol Direct. 2025-7-1

[8]
Self-amplifying NRF2-EZH2 epigenetic loop converts KRAS-initiated progenitors to invasive pancreatic cancer.

Nat Cancer. 2025-6-30

[9]
Cynaropicrin induces the apoptosis of colorectal cancer cells by elevating reactive oxygen species and activating the JNK/p38 MAPK.

Am J Cancer Res. 2025-5-15

[10]
Thiol-disulfide homeostasis and ischemia modified albumin levels in patients diagnosed with ovary carcinoma.

Sci Rep. 2025-6-5

本文引用的文献

[1]
Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress.

Elife. 2014-7-22

[2]
Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis.

Elife. 2014-5-13

[3]
Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides.

Nature. 2014-3-16

[4]
Antioxidants accelerate lung cancer progression in mice.

Sci Transl Med. 2014-1-29

[5]
Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity.

Nat Rev Cancer. 2014-1-20

[6]
Regulation of ferroptotic cancer cell death by GPX4.

Cell. 2014-1-16

[7]
Targeting SOD1 reduces experimental non–small-cell lung cancer.

J Clin Invest. 2014-1

[8]
Modulation of oxidative stress as an anticancer strategy.

Nat Rev Drug Discov. 2013-12

[9]
Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment.

Hum Mol Genet. 2014-3-15

[10]
The emerging role of the Nrf2-Keap1 signaling pathway in cancer.

Genes Dev. 2013-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索