Suppr超能文献

社会传播中的结构多样性。

Structural diversity in social contagion.

机构信息

Center for Applied Mathematics and Department of Computer Science, Cornell University, Ithaca, NY 14853, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5962-6. doi: 10.1073/pnas.1116502109. Epub 2012 Apr 2.

Abstract

The concept of contagion has steadily expanded from its original grounding in epidemic disease to describe a vast array of processes that spread across networks, notably social phenomena such as fads, political opinions, the adoption of new technologies, and financial decisions. Traditional models of social contagion have been based on physical analogies with biological contagion, in which the probability that an individual is affected by the contagion grows monotonically with the size of his or her "contact neighborhood"--the number of affected individuals with whom he or she is in contact. Whereas this contact neighborhood hypothesis has formed the underpinning of essentially all current models, it has been challenging to evaluate it due to the difficulty in obtaining detailed data on individual network neighborhoods during the course of a large-scale contagion process. Here we study this question by analyzing the growth of Facebook, a rare example of a social process with genuinely global adoption. We find that the probability of contagion is tightly controlled by the number of connected components in an individual's contact neighborhood, rather than by the actual size of the neighborhood. Surprisingly, once this "structural diversity" is controlled for, the size of the contact neighborhood is in fact generally a negative predictor of contagion. More broadly, our analysis shows how data at the size and resolution of the Facebook network make possible the identification of subtle structural signals that go undetected at smaller scales yet hold pivotal predictive roles for the outcomes of social processes.

摘要

从最初的传染病领域,到如今描述在网络中传播的各种过程,包括时尚潮流、政治观点、新技术采用和金融决策等社会现象,“传染”的概念一直在稳步扩展。传统的社交传染模型基于与生物传染的物理类比,在这种类比中,个体受到传染的概率随着其“接触邻居”(与之接触的受影响个体的数量)的大小单调增加。尽管这一接触邻居假说构成了几乎所有现有模型的基础,但由于在大规模传染过程中很难获得关于个体网络邻居的详细数据,因此评估该假说具有一定的挑战性。在这里,我们通过分析 Facebook 的增长来研究这个问题,Facebook 是具有真正全球采用度的社交过程的罕见示例。我们发现,传染的概率受到个体接触邻居中连通分量数量的严格控制,而不是由邻居的实际大小决定。令人惊讶的是,一旦控制了这种“结构多样性”,接触邻居的大小实际上通常是传染的负面预测指标。更广泛地说,我们的分析表明,Facebook 网络的大小和分辨率的数据如何能够识别出在较小规模下无法检测到但对社交过程的结果具有关键预测作用的微妙结构信号。

相似文献

1
Structural diversity in social contagion.社会传播中的结构多样性。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5962-6. doi: 10.1073/pnas.1116502109. Epub 2012 Apr 2.
2
Locating privileged spreaders on an online social network.在在线社交网络上定位特权传播者。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066123. doi: 10.1103/PhysRevE.85.066123. Epub 2012 Jun 19.
4
Multi-stage complex contagions.多阶段复杂传播。
Chaos. 2013 Mar;23(1):013124. doi: 10.1063/1.4790836.
10
Detecting emotional contagion in massive social networks.在大规模社交网络中检测情绪感染。
PLoS One. 2014 Mar 12;9(3):e90315. doi: 10.1371/journal.pone.0090315. eCollection 2014.

引用本文的文献

1
Tendencies toward triadic closure: Field experimental evidence.三元闭合倾向:实地实验证据。
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2404590122. doi: 10.1073/pnas.2404590122. Epub 2025 Jun 30.
4
Political participation and voluntary associations : A hypergraph case study.政治参与和志愿协会:超图案例研究。
PLoS One. 2025 Jan 27;20(1):e0311626. doi: 10.1371/journal.pone.0311626. eCollection 2025.
5
Spreading dynamics of information on online social networks.在线社交网络上信息的传播动态。
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2410227122. doi: 10.1073/pnas.2410227122. Epub 2025 Jan 23.
6
Social learning with complex contagion.复杂传染的社会学习。
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2414291121. doi: 10.1073/pnas.2414291121. Epub 2024 Nov 27.
7
How networks shape diversity for better or worse.网络如何塑造多样性,无论是好是坏。
R Soc Open Sci. 2024 May 22;11(5):230505. doi: 10.1098/rsos.230505. eCollection 2024 May.
8
Long ties accelerate noisy threshold-based contagions.长连接加速基于阈值的嘈杂传播。
Nat Hum Behav. 2024 Jun;8(6):1057-1064. doi: 10.1038/s41562-024-01865-0. Epub 2024 Apr 22.
10
Scaffolding cooperation in human groups with deep reinforcement learning.用深度强化学习来支撑人类群体的合作。
Nat Hum Behav. 2023 Oct;7(10):1787-1796. doi: 10.1038/s41562-023-01686-7. Epub 2023 Sep 7.

本文引用的文献

1
Inferring social ties from geographic coincidences.从地理巧合推断社会关系。
Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22436-41. doi: 10.1073/pnas.1006155107. Epub 2010 Dec 8.
2
Cooperative behavior cascades in human social networks.人类社交网络中的合作行为级联。
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5334-8. doi: 10.1073/pnas.0913149107. Epub 2010 Mar 8.
4
5
A model of Internet topology using k-shell decomposition.一种使用k-壳分解的互联网拓扑模型。
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11150-4. doi: 10.1073/pnas.0701175104. Epub 2007 Jun 22.
6
Quantifying social group evolution.量化社会群体演变。
Nature. 2007 Apr 5;446(7136):664-7. doi: 10.1038/nature05670.
8
9
Universal behavior in a generalized model of contagion.传染广义模型中的普遍行为。
Phys Rev Lett. 2004 May 28;92(21):218701. doi: 10.1103/PhysRevLett.92.218701. Epub 2004 May 24.
10
Random graph models of social networks.社交网络的随机图模型。
Proc Natl Acad Sci U S A. 2002 Feb 19;99 Suppl 1(Suppl 1):2566-72. doi: 10.1073/pnas.012582999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验